Skip to main content
Log in

Structural and Thermodynamic Analysis of Self-Association of Phenanthridine Dyes in Aqueous Solution by 1H NMR Spectroscopy

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Self-association of phenanthridine dyes (ethidium monoazide EMB and ethidium diazide EDC) in aqueous solution was studied by one- and two-dimensional 1H NMR (500 MHz). 2D-TOCSY and 2D-ROESY experiments were used for signal assignment of the dye protons. The concentration and temperature dependences of the chemical shifts of the nonexchangeable protons of EMB and EDC in aqueous solution have been measured. The experimental results were analyzed based on the infinitely dimensional noncooperative and cooperative models of self-association of molecules. The cooperativity parameter, the equilibrium constants, and the enthalpies and entropies of self-association of the dyes were calculated along with the limiting chemical shifts of EMB and EDC protons in the associates. The cooperativity parameter \(\sigma \) ≈ 1 indicates that association of phenanthridine dye molecules in aqueous solution is not a cooperative process. The presence of azido groups in the phenanthridine chromophore diminishes the equilibrium constant and the enthalpy of formation of dye aggregates in aqueous solution. The most plausible structures of EMB and EDC dimers in aqueous solution were derived from the induced proton chemical shifts of the dyes. In the dimer complexes of EMB and EDC, the distances between the planes of the aromatic chromophores are longer than those in the dimer of ethidium bromide due to electrostatic repulsion of the dipole azido groups in the phenanthridine chromophores of the dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. N. Ames, J. McCann, and E. Yamasaki, Mutation Res., 31, 347-364 (1975).

    Google Scholar 

  2. E. E. Gale, E. Cundliffe, P. E. Reynolds, et al., The Molecular Basis of Antibiotic Action, Wiley, London (1981).

    Google Scholar 

  3. D. E. Graves and L. M. Velea, Curr. Org. Chem., 4, 915-929 (2000).

    Google Scholar 

  4. W. H. Elliot, Biochem. J., 86, 562 (1963).

    Google Scholar 

  5. M. J. Waring, Biochem. Biophys. Acta, 87, 358-361 (1964).

    Google Scholar 

  6. P. H. Bolton and D. R. Kearns, Nucleic Acids Res., 5, 4891-4903 (1978).

    Google Scholar 

  7. F. Garland, D. E. Graves, L. W. Yielding, and H. C. Cheung, Biochemistry, 19, 3221-3226 (1980).

    Google Scholar 

  8. D. E. Graves, C. L. Watkins, and L. W. Yielding, ibid., 20, 1887-1892 (1981).

    Google Scholar 

  9. P. Laugaa, A. Delbarre, J.-B. Le Pecq, and B. P. Roques, Eur. J. Biochem., 134, 163-173 (1983).

    Google Scholar 

  10. D. B. Davies, L. N. Djimant, and A. N. Veselkov, J. Chem. Soc., Faraday Trans., 92, 383-390 (1996).

    Google Scholar 

  11. D. B. Davies and A. N. Veselkov, ibid., 92, 3545-3557 (1996).

    Google Scholar 

  12. D. B. Davies, V. I. Pahomov, and A. N. Veselkov, Nucleic Acids Res., 25, 4523-4531 (1997).

    Google Scholar 

  13. D. E. Graves, L. W. Yielding, C. L. Watkins, and K. L. Yielding, Biochem. Biophys. Acta, 479, 98-104 (1977).

    Google Scholar 

  14. A. N. Veselkov, L. N. Djimant, S. F. Baranovskii, et al., Khim. Fiz., 13, 70-78 (1994).

    Google Scholar 

  15. A. N. Veselkov, L. N. Djimant, S. F. Baranovskii, et al., Zh. Strukt. Khim., 36, 81-88 (1995).

    Google Scholar 

  16. R. J. Eaton, D. A. Veselkov, S. F. Baranovskii, et al., Khim. Fiz., 19, 98-104 (2000).

    Google Scholar 

  17. D. B. Davies, D. A. Veselkov, and A. N. Veselkov, Mol. Phys., 97, 439-451 (1999).

    Google Scholar 

  18. D. B. Davies, D. A. Veselkov, V. V. Kodintsev, et al., ibid., 98, 1961-1971 (2000).

    Google Scholar 

  19. A. N. Veselkov, L. N. Djimant, L. Karawajew, and E. L. Kulikov, Stud. Biophysica, 106, 171-180 (1985).

    Google Scholar 

  20. A. N. Veselkov and L. N. Djimant, Khim. Fiz., 7, 711-713 (1988).

    Google Scholar 

  21. C. G. Reinhardt and T. R. Krugh, Biochemistry, 17, 4845-4853 (1978).

    Google Scholar 

  22. B. H. Robinson, A. Loffler, and G. Schwartz, J. Chem. Soc., Faraday Trans., 69, 56-73 (1973).

    Google Scholar 

  23. J. B. Chaires, N. Dattagupta, and D. M. Crothers, Biochemistry, 21, 3927-3932 (1982).

    Google Scholar 

  24. P. D. Ross and S. Subramanian, ibid., 20, 3096-3102 (1981).

    Google Scholar 

  25. C. Giessner-Piettre and B. Pullman, Quart. Rev. Biophys., 20, 113-172 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselkov, A.N., Lantushenko, A.O., Veselkov, D.A. et al. Structural and Thermodynamic Analysis of Self-Association of Phenanthridine Dyes in Aqueous Solution by 1H NMR Spectroscopy. Journal of Structural Chemistry 43, 234–241 (2002). https://doi.org/10.1023/A:1019688121640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019688121640

Keywords

Navigation