Skip to main content
Log in

Theoretical Analysis of the Conformation of the Skeletal Base of Epoxysaccharide Molecules by the Vibrational Spectra

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

To explain the influence of the conformation of the skeletal base of the epoxysaccharide molecule on the frequencies and forms of normal vibrations, we have made a comparative theoretical analysis of the frequencies, forms, and potential energy distributions of normal vibrations in the 4001500 cm−1 spectral range of five conformers of the epoxysaccharide methyl‐3,4‐anhydro‐α‐D,L‐allopyranoside molecule that approximate conformations of the hexapyranose rings close to the half‐chair and boat forms. It is shown that a change in the structure of the molecule leads to frequency shifts and distortions of the forms of normal vibrations practically throughout the spectral range under consideration. The character of these changes is specific for different spectral ranges. The most sensitive to conformational changes in the pyranose ring are normal vibrations localized mainly within this ring, and the least sensitive ones are those localized on the bonds lying on the molecule's periphery. The frequency shift of normal vibrations comparable in form in the low‐frequency region in the series of conformers can reach 100 cm−1. It is shown that the 650800 cm−1 spectral range is the most convenient for identifying the form of the epoxypyranose ring. The changes in the force field associated with the conformation transitions of the pyranose ring are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. M. Andrianov and R. G. Zhbankov, Zh. Strukt. Khim., 35, 35–45 (1994).

    Google Scholar 

  2. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, Zh. Strukt. Khim., 36, 330–337 (1995).

    Google Scholar 

  3. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, Zh. Prikl. Spektrosk., 62, 62–71 (1995).

    Google Scholar 

  4. W. W. Pigman and R. M. Goeff, Chemistry of Carbohydrates, Academic Press, New York (1948).

    Google Scholar 

  5. C. Schuerch, Adv. Carbohydr. Biochem., 39, 157–183 (1981).

    Google Scholar 

  6. A. D. French and J. W. Brady, in: A. D. French and J. W. Brady (eds.), Computer Modelling of Carbohydrate Molecules, ACS, Washington, DC (1990), p. 1.

    Google Scholar 

  7. J. W. Krajewski, P. Gluzinski, Z. Urbanczyk-Lipkowska, A. Banaszek, L. Parkanyi, and A. Kalman, Carbohydr. Res., 144, 13–22 (1985).

    Google Scholar 

  8. J. W. Krajewski, P. Gluzinski, and A. Banaszek, Carbohydr. Res., 203, 195–203 (1990).

    Google Scholar 

  9. J. W. Krajewski, Z. Urbanczyk-Lipkowska, P. Gluzinski, and A. Banaszek, Carbohydr. Res., 194, 31–39 (1990).

    Google Scholar 

  10. J. W. Krajewski, P. Gluzinski, A. Banaszek, N. M. Galitskii, G. A. Yasnitskii, A. E. Golikov, and A. J. Verenich, Carbohydr. Res., 173, 145–149 (1988).

    Google Scholar 

  11. J. G. Buchanan and H. Z. Sable, in: B. S. Thyagarajan (ed.), Selective Organic Transformations, Wiley, New York (1972), p. 2.

    Google Scholar 

  12. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, J. Mol. Struct., 412, 103–113 (1997).

    Google Scholar 

  13. K. V. Wiberg and R. N. Boyd, J. Am. Chem. Soc., 94, 8426–8437 (1972).

    Google Scholar 

  14. V. M. Andrianov, R. G. Zhabnkov, and V. G. Dashevskii, Zh. Strukt. Khim., 21, 35–41 (1980).

    Google Scholar 

  15. R. G. Zhbankov, V. M. Andrianov, H. Ratajczak, and M. K. Marchewka, Zh. Strukt. Khim., 36, 322–329 (1995).

    Google Scholar 

  16. R. G. Zhbankov, V. M. Andrianov, H. Ratajczak, and M. K. Marchewka, Zh. Strukt. Khim., 36, 430–442 (1995).

    Google Scholar 

  17. R. G. Zhbankov, V. M. Andrianov, H. Ratajczak, and M. K. Marchewka, Zh. Strukt. Khim., 36, 443–455 (1995).

    Google Scholar 

  18. R. G. Zhbankov, V. M. Andrianov, H. Ratajczak, and M. K. Marchewka, Zh. Strukt. Khim., 36, 456–466 (1995).

    Google Scholar 

  19. R. G. Zhbankov, V. M. Andrianov, H. Ratajczak, and M. K. Marchewka, Zh. Fiz. Khim., 69, 553–558 (1995).

    Google Scholar 

  20. R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, J. Mol. Struct., 436?437, 637–654 (1997).

    Google Scholar 

  21. R. E. Reevs, J. Am. Chem. Soc., 71, 215–223 (1949).

    Google Scholar 

  22. M. Mathlouthi and J. L. Koenig, Adv. Carbohydr. Chem. Biochem., 44, 7–89 (1986).

    Google Scholar 

  23. H. Spedding, Adv. Carbohydr. Chem., 19, 23–49 (1964).

    Google Scholar 

  24. H. Herzberg, Vibrational and Rotational Spectra of Polyatomic Molecules [Russian translation], Moscow (1949).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, V.M., Zhbankov, R.G. Theoretical Analysis of the Conformation of the Skeletal Base of Epoxysaccharide Molecules by the Vibrational Spectra. Journal of Applied Spectroscopy 68, 205–234 (2001). https://doi.org/10.1023/A:1019207901185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019207901185

Navigation