Skip to main content
Log in

Symmetry breaking in HF wave functions of Fe(CH)2

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

HF and CAS calculations for linear geometry of Fe(CH)2 with \(D_{\infty h}\) symmetry have been performed. The basis sets used were DZ and DZ + P with ECP on the iron atom. Two closed‐shell and one quintet RHF wave functions have been found, \(\Phi _1^{{\text{RHF}}} ,\Phi _2^{{\text{RHF}}}\) and \(\Phi _3^{{\text{RHF}}\left( {\text{Q}} \right)}\). All of them are singlet and triplet unstable in the wide range of Fe–CH distances. Singlet instability leads to the Charge Density Wave (CDW) broken‐symmetry wave function with two electrons on carbon \(p_x\) or \(p_y\) orbital in the dissociation limit. Triplet instabilities lead to two broken‐symmetry HF wave functions of Axial Spin Density Wave (ASDW) type, ASDW1 and ASDW2. In the dissociation limit they give carbon atoms with two electrons on \(p_x\) and \(p_y\) orbitals coupled to singlet and triplet, respectively. The stability conditions for CDW, ASDW1 and ASDW2 instabilities have been derived. Other HF wave functions with spin symmetry unrestricted have been also found. CAS(8,8), CAS(10,10) and CAS(12,12) calculations for singlet, triplet and quintet states of Fe(CH)2 have been carried out. In all CAS calculations the singlet state has the lowest energy. The Fe–CH equilibrium distances obtained from closed‐shell RHF wave functions are much shorter and from broken‐symmetry wave functions are much longer than those obtained from CAS calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ågren, P.S. Bagus and B.O. Roos, Chem. Phys. Lett. 82 (1981) 505.

    Google Scholar 

  2. P.K. Baker, G.K. Barker, D.S. Gill, M. Green, A.G. Orpen, I.D. Williams and A.J. Welch, J. Chem. Soc. Dalton Trans. (1989) 1321.

  3. L.A. Barnes and R. Lindh, Chem. Phys. Lett. 223 (1994) 207.

    Google Scholar 

  4. M. Bénard, J. Chem. Phys. 71 (1979) 571.

    Google Scholar 

  5. M. Bénard, Theoret. Chim. Acta 61 (1982) 379.

    Google Scholar 

  6. M. Bénard, Chem. Phys. Lett. 96 (1983) 18.

    Google Scholar 

  7. A. Benchini and D.J. Gatteschi, J. Am. Chem. Soc. 108 (1986) 6763.

    Google Scholar 

  8. R.C. Binning, Jr. and L.A. Curtiss, J. Comput. Chem 11 (1990) 1206.

    Google Scholar 

  9. J.M. Bofill and P. Pulay, J. Chem. Phys. 90 (1989) 3637.

    Google Scholar 

  10. M.C. Böhm, Mol. Phys. 46 (1982) 683.

    Google Scholar 

  11. M.C. Böhm, J. Phys. B 16 (1983) L397.

    Google Scholar 

  12. M.C. Böhm, J. Chem. Phys. 80 (1984) 2704.

    Google Scholar 

  13. M.C. Böhm, J. Chem. Phys. 81 (1984) 855.

    Google Scholar 

  14. M.C. Böhm, Z. Phys. B 56 (1984) 99.

    Google Scholar 

  15. M. Bottrill, M. Green, A.G. Orpen, D.R. Saunders and I.D. Williams, J. Chem. Soc. Dalton Trans. (1989) 511.

  16. R. Broer-Bramm and W.C. Nieuwpoort, Chem. Phys. 54 (1981) 291.

    Google Scholar 

  17. M.A. Buijse and E.J. Baerends, J. Chem. Phys. 93 (1990) 4129.

    Google Scholar 

  18. M.A. Buijse and E.J. Baerends, Theoret. Chim. Acta 79 (1991) 389.

    Google Scholar 

  19. B.E. Bursten, J.R. Jensen, D.J. Gordon, P.M. Treichel and R.F. Fenske, J. Am. Chem. Soc. 103 (1981) 5226.

    Google Scholar 

  20. J.-L. Calais, Adv. Quantum Chem. 17 (1985) 225.

    Google Scholar 

  21. J.T. Carter and D.B. Cook, J. Chem. Soc. Chem. Commun. (1987) 1672.

  22. G. Chambaud, B. Levy and P. Millie, Theoret. Chim. Acta 48 (1978) 103.

    Google Scholar 

  23. D.B. Cook, Int. J. Quantum Chem. 34 (1992) 197.

    Google Scholar 

  24. T.H. Dunning, Jr. and P.J. Hay, in: Methods of Electronic Structure Theory, ed. H.F. Schaefer III (Plenum Press, New York, 1977) chapter 1.

    Google Scholar 

  25. M. Dupuis, D. Spangler, J.J. Wendoloski (NRCC Staff), M.W. Schmit (North Dakota University) and S.T. Elbert (Iowa State University), GAMESS, Version 22 February (1995).

  26. A.C. Fillipou, Polyhedron 9 (1990) 727.

    Google Scholar 

  27. A.C. Fillipou, W. Gr¨unleitner, C. Völkl and P. Kiprof, Angew. Chem. 103 (1991) 1188.

    Google Scholar 

  28. H. Fukutome, Progr. Theoret. Phys. 50 (1973) 1433.

    Google Scholar 

  29. H. Fukutome, Progr. Theoret. Phys. 52 (1974) 1766.

    Google Scholar 

  30. H. Fukutome, Int. J. Quantum Chem. 20 (1981) 955.

    Google Scholar 

  31. J.T. Golab, D.L. Yeager and P. Jorgensen, Chem. Phys. 93 (1985) 83.

    Google Scholar 

  32. A. Goursot, J.P. Malrieu and D.R. Salahub, Theoret. Chim. Acta 91 (1995) 225.

    Google Scholar 

  33. M.F. Guest, I.H. Hillier, A.A. MacDowell and M. Berry, Mol. Phys. 41 (1980) 519.

    Google Scholar 

  34. J.R. Hart, A.K. Rappé, S.M. Gorun and T.H. Upton, Inorg. Chem. 31 (1992) 5254.

    Google Scholar 

  35. P.J. Hay, J. Chem. Phys. 66 (1977) 4377.

    Google Scholar 

  36. P.J. Hay and W.R. Wadt, J. Chem. Phys. 82 (1985) 299.

    Google Scholar 

  37. M. Jaworska, P. Lodowski and J. Nowakowski, Chem. Phys. Lett. 232 (1995) 328.

    Google Scholar 

  38. U. Kaldor, Chem. Phys. Lett. 185 (1991) 131.

    Google Scholar 

  39. M.B. Lepetit and J.P. Malrieu, Chem. Phys. Lett. 169 (1990) 285.

    Google Scholar 

  40. M.B. Lepetit, J.P. Malrieu and M. Péllisier, Phys. Rev. A 39 (1989) 981.

    Google Scholar 

  41. M.B. Lepetit, J.P. Malrieu and G. Trinquier, Chem. Phys. 130 (1989) 229.

    Google Scholar 

  42. M.B. Lepetit, M. Pélissier and J.P. Malrieu, J. Chem. Phys. 89 (1988) 998.

    Google Scholar 

  43. X. Li and J. Paldus, J. Chem. Phys. 102 (1995) 2013.

    Google Scholar 

  44. C. Liang and H.F. Schaefer III, Chem. Phys. Lett. 169 (1990) 150.

    Google Scholar 

  45. T. Lovell, J.E. McGrady, R. Strange and S.A. Macgregor, Inorg. Chem. 35 (1996) 3079.

    Google Scholar 

  46. P.O. Löwdin, Phys. Rev. 97 (1955) 1509.

    Google Scholar 

  47. J. Manna, S.J. Geib and M.D. Hopkins, Angew. Chem. 105 (1993) 897.

    Google Scholar 

  48. A. Mayr and C.M. Bastos, J. Am. Chem. Soc. 112 (1990) 7797.

    Google Scholar 

  49. M.H. McAdon and W.A. Goddard III, J. Chem. Phys. 88 (1988) 277.

    Google Scholar 

  50. M.H. McAdon and W.A. Goddard III, J. Chem. Phys. 92 (1988) 1352.

    Google Scholar 

  51. G.A. Medley and R. Stranger, Inorg. Chem. 33 (1994) 3976.

    Google Scholar 

  52. M. Merch´an, R. Pou-Amérigo and B.O. Roos, Chem. Phys. Lett. 252 (1996) 405.

    Google Scholar 

  53. M.M. Mestechkin, Instability of Hartree-Fock Solutions and Molecular Stability (Naukova Dumka, Kiev, 1986) (in Russian).

  54. J.-M. Mouesca, J.L. Chen, L. Noodleman, D. Bashford and D.A. Case, J. Am. Chem. Soc. 116 (1994) 11898.

    Google Scholar 

  55. P. Mougenot, J. Demuynck and M. Bénard, J. Phys. Chem. 92 (1988) 571.

    Google Scholar 

  56. L. Noodleman, J. Chem. Phys. 74 (1981) 5737.

    Google Scholar 

  57. L. Noodleman and E.J. Baerends, J. Am. Chem. Soc. 106 (1984) 2316.

    Google Scholar 

  58. L. Noodleman and D.A. Case, Adv. Inorg. Chem. 38 (1992) 423.

    Google Scholar 

  59. L. Noodleman, D.A. Case and A. Aizman, J. Am. Chem. Soc. 110 (1988) 1001.

    Google Scholar 

  60. L. Noodleman and E.R. Davidson, Chem. Phys. 109 (1986) 131.

    Google Scholar 

  61. M. Ozaki and H. Fukutome, Progr. Theoret. Phys. 60 (1978) 1322.

    Google Scholar 

  62. J. Paldus, Hartree-Fock stability and symmetry breaking, in: Self-Consistent Field: Theory and Applications, eds. R. Carbo and M. Klobukowski (Elsevier, New York, 1990).

    Google Scholar 

  63. J. Paldus, E. Chin and M.G. Grey, Int. J. Quantum Chem. 14 (1983) 395.

    Google Scholar 

  64. J. Paldus and J. Čižek, J. Chem. Phys. 47 (1967) 3976.

    Google Scholar 

  65. J. Paldus and J. Čižek, J. Chem. Phys. 52 (1970) 2919.

    Google Scholar 

  66. J. Paldus and J. Čižek, J. Chem. Phys. 53 (1970) 821.

    Google Scholar 

  67. J. Paldus and J. Čižek, Phys. Rev. A 2 (1970) 2268.

    Google Scholar 

  68. J. Paldus and J. Čižek, J. Chem. Phys. 54 (1971) 2293.

    Google Scholar 

  69. J. Paldus and J. Čižek, Phys. Rev. A 3 (1971) 525.

    Google Scholar 

  70. R. Pauncz and J. Paldus, Int. J. Quantum Chem. 14 (1983) 411.

    Google Scholar 

  71. A.J.L. Pombeiro and L.R. Richards, Transition Met. Chem. 5 (1980) 55.

    Google Scholar 

  72. P.K. Ross and E.I. Solomon, J. Am. Chem. Soc. 113 (1991) 3246.

    Google Scholar 

  73. J.C. Slater, Phys. Rev. 82 (1951) 538.

    Google Scholar 

  74. J.F. Stanton, J. Gauss and R.J. Bartlett, J. Chem. Phys. 97 (1992) 5554.

    Google Scholar 

  75. M. Takahashi, J. Paldus and J. Čižek, Int. J. Quantum Chem. 14 (1983) 707.

    Google Scholar 

  76. K. Takatsuka, T. Fueno and K. Yamaguchi, Theoret. Chim. Acta 48 (1978) 175.

    Google Scholar 

  77. T.E. Taylor and M.B. Hall, Chem. Phys. Lett. 114 (1985) 338.

    Google Scholar 

  78. R. Wiest and M. Bénard, Theoret. Chim. Acta 66 (1984) 65.

    Google Scholar 

  79. K. Yamaguchi, Chem. Phys. 25 (1977) 215.

    Google Scholar 

  80. K. Yamaguchi, Int. J. Quantum Chem. 12 (1982) 459.

    Google Scholar 

  81. K. Yamaguchi, Instability in chemical bonds-SCF, APUMP, APUCC, MR-CI and MR-CC approaches, in: Self-Consistent Field: Theory and Applications, eds. R. Carbo and M. Klobukowski (Elsevier, New York, 1990).

    Google Scholar 

  82. K. Yamaguchi, T. Fueno, N. Ueyama and A. Nakamura, Chem. Phys. Lett. 164 (1989) 211.

    Google Scholar 

  83. K. Yamaguchi, Y. Takahara, T. Fueno and K.N. Houk, Theoret. Chim. Acta 73 (1988) 337.

    Google Scholar 

  84. K. Yamaguchi, T. Tsunekawa, Y. Toyoda and T. Fueno, Chem. Phys. Lett. 143 (1988) 371.

    Google Scholar 

  85. K. Yamaguchi, Y. Yoshioka, T. Takatsuka and T. Fueno, Theoret. Chim. Acta 48 (1978) 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworska, M., Lodowski, P. Symmetry breaking in HF wave functions of Fe(CH)2 . Journal of Mathematical Chemistry 25, 7–21 (1999). https://doi.org/10.1023/A:1019155610665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019155610665

Keywords

Navigation