Skip to main content
Log in

A cellular automata model of the soluble state

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Cellular automata models of solubilities in a solvent (water) have been dynamically synthesized. Rules relatingwater‐water, water‐solute, and solute‐solute relationships have been systematically varied in order to assess their influence on the emergent property of solubility. The results reveal the prominent influence of rules governing the probabilities of solute‐water joining and breaking. This influence manifests itself in significant changes in the emergent properties of relative solubility and solubility changes with water“temperature”. The study demonstrates the validity and potential value of cellular automata to model solution phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bernal and R.H. Fowler, A theory of water and ionic solution, J. Chem. Phys. 1 (1933) 515.

    Article  CAS  Google Scholar 

  2. G.B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modeling, J. Theor. Biol. 160 (1993) 97.

    Article  CAS  Google Scholar 

  3. D. Farmer, T. Toffoli and S. Wolfram, eds., Cellular Automata, Physica D 10 (1984).

  4. A. Geiger, F.H. Stillinger and A. Rahman, Aspects of the percolation process for hydrogen bond networks in water, J. Chem. Phys. 70 (1979) 4186.

    Google Scholar 

  5. J.M. Haile, Molecular Dynamics Simulation(Wiley, New York, 1992).

    Google Scholar 

  6. L.B. Kier and C.-K. Cheng, A cellular automata model of water, J. Chem. Inf. and Comp. Sci. 34 (1984) 647.

    Article  Google Scholar 

  7. L.B. Kier and C.-K. Cheng, A cellular automata model of an aqueous solution, J. Chem. Inf. and Comp. Sci. 34 (1994) 1334.

    Article  CAS  Google Scholar 

  8. L.B. Kier and C.-K. Cheng, A cellular automata model of dissolution, Pharm. Res. 12 (1995) 1521.

    Article  CAS  Google Scholar 

  9. L.B. Kier, C.-K. Cheng, B. Testa and P.-A. Carrupt, A cellular automata model of the hydrophobic effect, Pharm. Res. 12 (1995) 615.

    Article  CAS  Google Scholar 

  10. L.B. Kier, C.-K. Cheng, B. Testa and P.-A. Carrupt, A cellular automata model of micelle formation, Pharm. Res. 13 (1996) 1419.

    Article  CAS  Google Scholar 

  11. L.B. Kier and B. Testa, Complexity and emergence in drug research, Advances in Drug Research 26 (1995) 1.

    CAS  Google Scholar 

  12. M. Mezei and D.L. Beveridge, Theoretical studies of hydrogen bonding in liquid water and dilute aqueous solutions, J. Chem. Phys. 74 (1981) 622.

    Article  CAS  Google Scholar 

  13. S.A. Rice and M.G. Skeats, A random network model for water, J. Phys. Chem. 85 (1981) 1108.

    Article  CAS  Google Scholar 

  14. R.J. Speedy, Self-replicating structures in water, J. Phys. Chem. 88 (1984) 3364.

    Article  CAS  Google Scholar 

  15. H.E. Stanley and J. Teixeira, Interpretation of unusual behavior of H2O andD2O at low temperatures: tests of a percolation model, J. Chem. Phys. 73 (1980) 3404.

    Article  CAS  Google Scholar 

  16. S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Physics 55 (1984) 601.

    Article  Google Scholar 

  17. W.H. Zachariasen, The atomic arrangement in glass, J. Am. Chem. Soc. 54 (1932) 3841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kier, L.B., Cheng, C. A cellular automata model of the soluble state. Journal of Mathematical Chemistry 21, 71–81 (1997). https://doi.org/10.1023/A:1019106015749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019106015749

Keywords

Navigation