Skip to main content
Log in

Use of overtones and combination modes for the identification of surface NOx anionic species by IR spectroscopy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Adsorption of NO on ZrO2 produces a series of compounds, among them N2O which is characterized by a band at 1232 cm-1 and the respective overtone (12 times less intense) at 2466 cm-1. Co-adsorption of NO and O2 results in the formation of different surface nitrates. Bridging nitrates are characterized by a set of bands at 1640, 1220 and 1004 cm-1 and manifest a combination mode at 2612 cm-1. Bidentate nitrates (1588–1568, 1240 and 1042 cm-1) show a combination mode at 2580 cm-1, which for monodentate nitrates (1515, 1295 and 1019 cm-1) is found at 2522 cm-1. In all these cases the combination mode is by about two orders of magnitude less intense than the fundamental band in the 1650–1500 cm-1 region. The use of overtones and combination modes is proposed to help the assignments of the NOx bands. It is demonstrated that bands in the 1650–1550 cm-1 region, produced after NO + O2 co-adsorption on Fe-ZSM-5, are due to nitrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.J. Li, T.L. Slager and J.N. Armor, J. Catal. 150 (1994) 388.

    Article  Google Scholar 

  2. T. Beutel, B. Adelman, G. Lei and W.M.H. Sachtler, Catal. Lett. 32 (1995) 83.

    Google Scholar 

  3. T. Hoost, K. Laframboise and K. Otto, Appl. Catal. B 7 (1995) 79.

    Google Scholar 

  4. T. Tabata, H. Ohtsuka, M. Kokitsu and O. Okada, Bull. Chem. Soc. Jpn. 68 (1995) 1905.

    Google Scholar 

  5. K. Hadjiivanov, D. Klissurski, G. Ramis and G. Busca, Appl. Catal. B 7 (1996) 251.

    Google Scholar 

  6. B. Adelman, T. Beutel, G. Lei and W.M.H. Sachtler, J. Catal. 158 (1996) 327.

    Article  Google Scholar 

  7. B. Djonev, B. Tsyntsarski, D. Klissurski and K. Hadjiivanov, J. Chem. Soc. Faraday Trans. 93 (1997) 4055.

    Google Scholar 

  8. A. Aylor, L. Lobree, J. Reimer and A.T. Bell, J. Catal. 170 (1997) 390.

    Google Scholar 

  9. W.S. Kijlstra, D. Brands, E. Poels and A. Bliek, J. Catal. 171 (1997) 208.

    Google Scholar 

  10. A. Satsuma, K. Yamada, K. Sato, K. Shimizu, T. Hattori and Y. Murakami, Catal. Lett. 45 (1997) 267.

    Google Scholar 

  11. V. Parvulescu, P. Grange and B. Delmon, J. Phys. Chem. B 101 (1997) 6933.

    Google Scholar 

  12. Y. Kintaichi, M. Haneda, M. Inaba and M. Hamada, Catal. Lett. 48 (1997) 121.

    Google Scholar 

  13. H.Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, J. Catal. 180 (1998) 171.

    Google Scholar 

  14. K. Hadjiivanov, B. Tsyntsarski and T. Nikolova, Phys. Chem. Chem. Phys. 1 (1999) 4521.

    Google Scholar 

  15. K. Hadjiivanov, H. Knözinger, B. Tsyntsarski and L. Dimitrov, Catal. Lett. 62 (1999) 35.

    Google Scholar 

  16. L.J. Lobree, A. Aylor, A.J. Reimer and A.T. Bell, J. Catal. 181 (1999) 189.

    Google Scholar 

  17. M. Sirilumpen, R.T. Yang and N.J. Tharapiwattananon, J. Mol. Catal. A 137 (1999) 273.

    Google Scholar 

  18. S. Kameoka, Y. Ukisu and T. Miyadera, Phys. Chem. Chem. Phys. 2 (2000) 367.

    Google Scholar 

  19. V. Matyshak, S. Baron, A. Ukharskii, A. Ilichev, V. Sadykov and V. Korchak, Kinet. Katal. 37 (1996) 549.

    Google Scholar 

  20. J.O. Petunchi and W.K. Hall, Appl. Catal. B 2 (1993) L17.

    Google Scholar 

  21. A. Aylor, L.J. Lobree, J. Reiner and A.T. Bell, Stud. Surf. Sci. Catal. 101A (1996) 661.

    Google Scholar 

  22. G. Centi and S. Perathoner, Catal. Today 29 (1996) 117.

    Google Scholar 

  23. M. Haneda, Y. Kintaichi, M. Inaba and H. Hamada, Bull. Chem. Soc. Jpn. 70 (1997) 499.

    Google Scholar 

  24. T. Sun, M.D. Fokema and J.Y. Ying, Catal. Today 33 (1997) 251.

    Google Scholar 

  25. T. Gerlach, F.W. Schultze and M. Baerns, J. Catal. 185 (1999) 131.

    Google Scholar 

  26. V.A. Bell, J.S. Feeley, M. Deeba and R.J. Farrauto, Catal. Lett. 29 (1994) 15.

    Google Scholar 

  27. K. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (2000) 71.

    Google Scholar 

  28. J. Laane and J.R. Ohlsen, Prog. Inorg. Chem. 28 (1986) 465.

    Google Scholar 

  29. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Mir, Moscow, 1966).

    Google Scholar 

  30. D. Pozdnyakov and V. Filimonov, Kinet. Katal. 14 (1973) 760.

    Google Scholar 

  31. H. Miyata, S. Konishi, T. Ohno and F. Hatayama, J. Chem. Soc. Faraday Trans. 91 (1995) 1557.

    Google Scholar 

  32. V. Indovina, D. Cordischi, S. de Rossi, G. Ferraris, G. Ghiotti and A. Chiorino, J. Mol. Catal. 68 (1991) 53.

    Google Scholar 

  33. G. Delahay, B. Coq, E. Ensuque, F. Figueras, J. Saussey and F. Poignant, Langmuir 13 (1997) 5588.

    Google Scholar 

  34. T.M. Miller and V.H. Grassian, Catal. Lett. 46 (1997) 213.

    Google Scholar 

  35. M. Kantcheva, V. Bushev and D. Klissurski, J. Catal. 145 (1994) 96.

    Google Scholar 

  36. M. Kantcheva, V. Bushev and K. Hadjiivanov, J. Chem. Soc. Faraday Trans. 88 (1992) 3087.

    Google Scholar 

  37. K. Hadjiivanov, D. Klissurski and V. Bushev, J. Chem. Soc. Faraday Trans. 91 (1995) 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjiivanov, K. Use of overtones and combination modes for the identification of surface NOx anionic species by IR spectroscopy. Catalysis Letters 68, 157–161 (2000). https://doi.org/10.1023/A:1019087521084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019087521084

Navigation