Skip to main content
Log in

Surface composition and possible rearrangement of disperse Pt and Rh catalysts: does the presence of carbon and oxygen contribute to different catalytic properties?

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The surface composition of Rh and Pt blacks (as determined by XPS) shows carbon and oxygen impurities in the untreated state. Oxygen on Pt is present as adsorbed O as well as OH/H2O groups and oxidized carbon. Rh was partly oxidized to Rh2O3, in agreement with UPS showing hardly any Fermi‐edge intensity in untreated Rh as opposed to untreated Pt. High Fermi‐edge intensities indicated a predominant metallic surface after an in situ treatment with H2 at 483 K, increasing the purity (XPS) to ∼90%. This treatment reduced Rh to metal and removed its C impurity. Pt, in turn, retained much carbon after H2 treatment, present mainly as graphitic carbon. A minor amount of CO was also detected, some of the O 1s peak belonging to it. The two metals were tested in methylcyclopentane reactions. Considering the necessity of carbon for nondegradative reactions and oxygen enhancing fragmentation, a correlation is suggested between the typical impurities of Pt and Rh and their respective catalytic propensities: the high fragmentation activity of Rh and the predominant nondegradative reactions to C6 “ring opening products” on Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  2. G.A. Somorjai and F. Zaera, J. Phys. Chem. 86 (1982) 3070.

    Article  CAS  Google Scholar 

  3. F. Zaera, D. Godbey and G.A. Somorjai, J. Catal. 101 (1986) 73.

    Article  CAS  Google Scholar 

  4. Z. Paál, R. Schlögl and G. Ertl, J. Chem. Soc. Faraday Trans. 88 (1992) 1179.

    Article  Google Scholar 

  5. G. Webb, Catal. Today 7 (1990) 139.

    Article  CAS  Google Scholar 

  6. A. Sárkány, Catal. Today 5 (1989) 173.

    Article  Google Scholar 

  7. A. Sárkány, J. Chem. Soc. Faraday Trans. I 85 (1989) 1523.

    Article  Google Scholar 

  8. F. Garin, G. Maire, S. Zyade, M. Zauwen, A. Frennet and P. Zielinski, J. Mol. Catal. 58 (1990) 185.

    Article  CAS  Google Scholar 

  9. Z. Paál, K. Matusek, A. Wootsch, U. Wild and R. Schlögl, in: 16th North American Catalysis Society Meeting, Boston, 1999; Catal. Today, submitted.

  10. P.G. Menon, J. Mol. Catal. 59 (1990) 207.

    Article  CAS  Google Scholar 

  11. J. Find, Z. Paál, H. Sauer, R. Schlögl, U. Wild and A. Wootsch, in: Proc. 12th Int. Congr. Catal., Granada, 2000, in press.

  12. Z. Paál, Zh. Zhan, E. Fülöp and B. Tesche, J. Catal. 156 (1995) 19.

    Article  Google Scholar 

  13. J. Find, Z. Paál, R. Schlögl and U. Wild, Catal. Lett. 65 (2000) 19.

    Article  CAS  Google Scholar 

  14. Z. Paál and Z. Zhan, Langmuir 13 (1997) 3752.

    Article  Google Scholar 

  15. W.T. Owens, N.M. Rodriguez and R.T.K. Baker, J. Phys. Chem. 96 (1992) 5048.

    Article  CAS  Google Scholar 

  16. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994) pp. 62-66.

    Google Scholar 

  17. G.A. Somorjai, Catal. Lett. 12 (1992) 17.

    Article  CAS  Google Scholar 

  18. G.A. Somorjai, J. Mol. Catal. A 107 (1996) 39.

    Article  CAS  Google Scholar 

  19. B. Lang, P. Légaré and G. Maire, Surf. Sci. 47 (1975) 89.

    Article  CAS  Google Scholar 

  20. B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 11 (1993) 1964.

    Article  CAS  Google Scholar 

  21. G. Maire, F. Bernhardt, P. Légaré and G. Lindauer, in: Proc. 7th Int. Vac. Congr. 3rd Int. Conf. Solid Surf., Vienna, 1977, p. 861.

  22. P.P. Lankhorst, H.C. de Jongste and V. Ponec, in: Catalyst Deactivation, eds. B. Delmon and G.F. Froment (Elsevier, Amsterdam, 1980) p. 43.

    Google Scholar 

  23. J.L. Carter, J.A. Cusumano and J.H. Sinfelt, J. Catal. 20 (1971) 223.

    Article  CAS  Google Scholar 

  24. D. Teschner and Z. Paál, J. Catal. (2000), in press.

  25. Z. Paál and P. Tétényi, Nature 267 (1977) 234.

    Article  Google Scholar 

  26. T. Baird, Z. Paál and S.J. Thomson, J. Chem. Soc. Faraday Trans. I 69 (1973) 1237.

    Article  CAS  Google Scholar 

  27. Z. Paál, H. Zimmer, J.R. Günter, R. Schlögl and M. Muhler, J. Catal. 119 (1989) 146.

    Article  Google Scholar 

  28. Z. Paál and R. Schlögl, Surf. Interface Anal. 19 (1992) 524.

    Article  Google Scholar 

  29. J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).

    Google Scholar 

  30. U. Wild, N. Pfánder and R. Schlögl, Fresenius J. Anal. Chem. 357 (1997) 420.

    Article  CAS  Google Scholar 

  31. J. Burkhardt and L.D. Schmidt, J. Catal. 115 (1989) 356.

    Article  Google Scholar 

  32. A.A. Tolia, R.J. Smiley, W.N. Delgass, C.G. Takoudis and M.J. Weaver, J. Catal. 150 (1994) 56.

    Article  CAS  Google Scholar 

  33. H.C. Peebles and J.M. White, Surf. Sci. 136 (1984) 463.

    Article  CAS  Google Scholar 

  34. F. Solymosi, A. Berkó and T.I. Tarnóczi, J. Chem. Phys. 87 (1987) 6745.

    Article  CAS  Google Scholar 

  35. P. Norton, Surf. Sci. 47 (1975) 98.

    Article  CAS  Google Scholar 

  36. J. Küppers and G. Ertl, Surf. Sci. 77 (1978) L647.

    Article  Google Scholar 

  37. J. Kiss, G. Klivényi, K. Révész and F. Solymosi, Surf. Sci. 223 (1989) 551.

    Article  CAS  Google Scholar 

  38. C. Rehren, M. Muhler, X. Bao, R. Schlögl and G. Ertl, Z. Phys. Chem. 174 (1991) 11.

    CAS  Google Scholar 

  39. D.N. Belton and S.J. Schmieg, Surf. Sci. 233 (1990) 131.

    Article  CAS  Google Scholar 

  40. N. Freyer, G. Pirug and H.P. Bonzel, Surf. Sci. 126 (1983) 487.

    Article  CAS  Google Scholar 

  41. K.S. Kim, N. Winograd and R.E. Davis, J. Am. Chem. Soc. 93 (1971) 6296.

    Article  CAS  Google Scholar 

  42. Z. Karpinski, W. Juszczyk and J. Pielaszek, J. Chem. Soc. Faraday Trans. I 83 (1987) 1293.

    Article  CAS  Google Scholar 

  43. F.G. Gault, Adv. Catal. 30 (1981) 1.

    Article  CAS  Google Scholar 

  44. B. Coq, R. Dutartre, F. Figueras and T. Tazi, J. Catal. 122 (1990) 438.

    Article  CAS  Google Scholar 

  45. P.P. Lankhorst, H.C. de Jongste and V. Ponec, in: Catalyst Deactivation, eds. B. Delmon and G.F. Froment (Elsevier, Amsterdam, 1980) p. 43.

    Google Scholar 

  46. L.D. Schmidt and K.R. Krause, Catal. Today 12 (1992) 269.

    Article  CAS  Google Scholar 

  47. Z. Paál, U. Wild, A. Wootsch, J. Find and R. Schlögl, PCCP, submitted.

  48. B. Lang, Surf. Sci. 53 (1975) 317.

    Article  CAS  Google Scholar 

  49. S. Nishiyama, K. Yoshioka, S. Matsuura, S. Tsuruya and M. Masai, React. Kinet. Catal. Lett. 33 (1987) 405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, U., Teschner, D., Schlögl, R. et al. Surface composition and possible rearrangement of disperse Pt and Rh catalysts: does the presence of carbon and oxygen contribute to different catalytic properties?. Catalysis Letters 67, 93–98 (2000). https://doi.org/10.1023/A:1019061420659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019061420659

Navigation