Skip to main content
Log in

Fe-modified hydroxyl-rich structured Pt/Fe x /γ-Al 2 O 3 /Al catalyst for CO oxidation at room temperature: behavior and mechanism

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A structured anodic alumina-supported Pt and Fe composition catalyst was developed to investigate its catalytic performance in carbon monoxide (CO) oxidation reactions. It is found that the hydroxyl-rich structured Pt/Fex/γ-Al2O3/Al catalyst with a mass of 0.58 g achieved 100% removal of CO and exhibited good stability of 60 h by weakening the competition between CO and O2 on the catalyst and decreasing the energy barrier. In addition, a series of explorations were carried out on the changes of relevant functional groups and active sites during catalyst deactivation and regeneration, and the data were explained in detail. Furtherly, it is demonstrated by in situ DRIFT that formate species are the important intermediates, produced by the reaction between hydroxyl group (–OH) on the catalyst and adsorbed CO. To explore the reaction mechanism at the atomic level, the CO oxidation reaction at the interface of Pt, Pt–OH, and Pt–Fe2O3 was analyzed by DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu J, Zhou C, Yue W, Yan B, Lin Y, Huang A (2020) Facile and green template-free synthesis of morphology-controllable Co3O4 catalysts for CO oxidation. Chem Phys Lett 756:137817. https://doi.org/10.1016/j.cplett.2020.137817

    Article  CAS  Google Scholar 

  2. Soliman NK (2019) Factors affecting CO oxidation reaction over nanosized materials: a review. J Market Res 8(2):2395–2407. https://doi.org/10.1016/j.jmrt.2018.12.012

    Article  CAS  Google Scholar 

  3. Khder AERS, Altass HM, Orif MI, Ashour SS, Almazroai LS (2019) Preparation and characterization of highly active Pd nanoparticles supported Mn3O4 catalyst for low-temperature CO oxidation. Mater Res Bull 113:215–222. https://doi.org/10.1016/j.materresbull.2019.02.011

    Article  CAS  Google Scholar 

  4. Xu Z, Li Y, Lin Y, Zhu T (2020) A review of the catalysts used in the reduction of NO by CO for gas purification. Environ Sci Pollut R 27(4):6723–6748. https://doi.org/10.1007/s11356-019-07469-w

    Article  CAS  Google Scholar 

  5. Hussain I, Jalil AA, Hamid MYS, Hassan NS (2021) Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: a state-of-the-art review. Chemosphere 277:130285. https://doi.org/10.1016/j.chemosphere.2021.130285

    Article  CAS  PubMed  Google Scholar 

  6. Bower J, Hänninen O, Kotlik B (1999) Monitoring ambient air quality for health impact assessment. WHO Regional Publications, European Series: 92

  7. Feng C, Liu X, Zhu T, Tian M (2021) Catalytic oxidation of CO on noble metal-based catalysts. Environ Sci Pollut Res Int 28(20):24847–24871. https://doi.org/10.1007/s11356-021-13008-3

    Article  CAS  PubMed  Google Scholar 

  8. Morán-Pineda M, Castillo S, Gómez R (2002) Low-temperature oxidation of CO to CO2 in solutions of halide complexes of Pt and heteropolyacid (HPA). React Kinet Catal Lett 76:375–381. https://doi.org/10.1023/A:1016508600318

    Article  Google Scholar 

  9. Hoflund GB, Gardner SD, Schryer DR, Upchurch BT, Kielin EJ (1995) Au/MnOx cataiytic performance characteristics for iow-temperature carbon. Appl Catal B 6(2):117–126. https://doi.org/10.1016/0926-3373(95)00010-0

    Article  CAS  Google Scholar 

  10. Hoflund GB, Gardner SD, Schryer DR, Upchurch BT, Kielin EJ (1996) Influence of promoters on the performance of Au/MnOx and Pt/SnOx/SiO2 low-temperature CO oxidation catalysts. Reac Kinet Mech Cat 58:19–26. https://doi.org/10.1007/BF02071100

    Article  CAS  Google Scholar 

  11. Zhou Z, Flytzani-Stephanopoulos M, Saltsburg H (2011) Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. J Catal 280(2):255–263. https://doi.org/10.1016/j.jcat.2011.03.023

    Article  CAS  Google Scholar 

  12. Beck A, Yang A-C, Leland AR, Riscoe AR (2018) Understanding the preferential oxidation of carbon monoxide (PrOx) using size-controlled au nanocrystal catalyst. AlChE J 64:3159–3167. https://doi.org/10.1002/aic.16206

    Article  CAS  Google Scholar 

  13. Shekhar M, Wang J, Lee W-S, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2012) Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc 134(10):4700–4708. https://doi.org/10.1021/ja210083d

    Article  CAS  PubMed  Google Scholar 

  14. Qiao B, Wang A, Yang X, Allard LF, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1 /FeOx. Nat Chem 3(8):634–641. https://doi.org/10.1038/nchem.1095

    Article  CAS  PubMed  Google Scholar 

  15. Cargnello M, Doan-Nguven V, Gordon T, Diaz R, Stach E, Gorte R, Fornasiero P, Murray C (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773. https://doi.org/10.1126/science.1240148

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Zhao Y, Fu G, Duchesne P, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C (2014) Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 344(6183):495–499. https://doi.org/10.1126/science.1252553

    Article  CAS  PubMed  Google Scholar 

  17. Yang M, Liu J, Lee S, Zugic B, Huang J, Allard LF, Flytzani-Stephanopoulos M (2015) A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J Am Chem Soc 137(10):3470–3473. https://doi.org/10.1021/ja513292k

    Article  CAS  PubMed  Google Scholar 

  18. Zhai Y, Pierre D, Si R, Deng W, Ferrin P, Nilekar AU, Peng G, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M (2010) Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329(5999):1633–1636. https://doi.org/10.1126/science.1192449

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Lin J, Li L, Pan X, Zhang T (2021) Local structure of Pt species dictates remarkable performance on Pt/Al2O3 for preferential oxidation of CO in H2. Appl Catal B 282:119588. https://doi.org/10.1016/j.apcatb.2020.119588

    Article  CAS  Google Scholar 

  20. Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J Am Chem Soc 132(21):7418–7428. https://doi.org/10.1021/ja101108w

    Article  CAS  PubMed  Google Scholar 

  21. Doherty RP, Krafft JM, Methivier C, Casale S, Remita H, Louis C, Thomas C (2012) On the promoting effect of Au on CO oxidation kinetics of Au-Pt bimetallic nanoparticles supported on SiO2: an electronic effect. J Catal 287:102–113. https://doi.org/10.1016/j.jcat.2011.12.011

    Article  CAS  Google Scholar 

  22. Zhang H, Liu X, Zhang N, Zheng J, Li Y, Zhong C-J, Chen BH (2016) Construction of ultrafine and stable PtFe nano-alloy with ultra-low Pt loading for complete removal of CO in PROX at room temperature. Appl Catal B 180:237–245. https://doi.org/10.1016/j.apcatb.2015.06.032

    Article  CAS  Google Scholar 

  23. Hwang SY, Zhang C, Yurchekfrodl E, Peng Z (2014) Property of Pt-Ag alloy nanoparticle catalysts in carbon monoxide oxidation. J Phys Chem C 118(49):28739–28745. https://doi.org/10.1021/jp5101768

    Article  CAS  Google Scholar 

  24. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  PubMed  Google Scholar 

  25. Fu K, Su Y, Zheng Y, Han R, Liu Q (2022) Novel monolithic catalysts for VOCs removal: a review on preparation, carrier and energy supply. Chemosphere 308(2):136256. https://doi.org/10.1016/j.chemosphere.2022.136256

    Article  CAS  PubMed  Google Scholar 

  26. Schryer DR, Upchurch BT, Sidney BD, Brown KG, Hoflund GB, Herz RK (1991) A proposed mechanism for Pt-SnOx-catalyzed CO oxidation. J Catal 130(1):314–317. https://doi.org/10.1016/0021-9517(91)90114-J

    Article  CAS  Google Scholar 

  27. Biabani-Ravandi A, Rezaei M (2012) Low temperature CO oxidation over Fe-Co mixed oxide nanocatalysts. Chem Eng J 184:141–146. https://doi.org/10.1016/j.cej.2012.01.017

    Article  CAS  Google Scholar 

  28. Seyfi B, Baghalha M, Kazemian H (2009) Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation. Chem Eng J 148(2–3):306–311. https://doi.org/10.1016/j.cej.2008.08.041

    Article  CAS  Google Scholar 

  29. Fan F, Zhang Q, Wang X, Ni Y, Wu Y, Zhu Z (2016) A structured Cu-based/γ-Al2O3/Al plate-type catalyst for steam reforming of dimethyl ether: self-activation behavior investigation and stability improvement. Fuel 186(15):11–19. https://doi.org/10.1016/j.fuel.2016.08.036

    Article  CAS  Google Scholar 

  30. Kresse GG, Furthmüller JJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  31. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  32. Lou Y, Liu J (2017) A highly active Pt-Fe/γ-Al2O3 catalyst for preferential oxidation of CO in excess of H2 with a wide operation temperature window. Chem Commun 53(64):9020–9023. https://doi.org/10.1039/c7cc03787b

    Article  CAS  Google Scholar 

  33. Zhong W, Zhang D (2012) New insight into the CO formation mechanism during formic acid oxidation on Pt(111). Catal Commun 29:82–86. https://doi.org/10.1016/j.catcom.2012.09.002

    Article  CAS  Google Scholar 

  34. Zhang G, Zhao J, Wang Q, Yang T, Zhang Q, Zhang L (2021) Fast start-up structured CuFeMg/Al2O3 catalyst applied in microreactor for efficient hydrogen production in methanol steam reforming. Chem Eng J 426:130644. https://doi.org/10.1016/j.cej.2021.130644

    Article  CAS  Google Scholar 

  35. Chen W, Cao J, Fu W, Zhang J, Qian G, Yang J, Chen ZX, Yuan W, Duan X (2022) Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew Chem Int Ed Engl 61(16):1521–3773. https://doi.org/10.1002/anie.202200190

    Article  CAS  Google Scholar 

  36. Chen W, Liu C, Lian C, Yu Y, Zhang X, Qian G, Yang J, Chen D, Zhou X, Yuan W, Duan X (2022) Engineering electronic platinum-carbon support interaction to tame carbon monoxide activation. Fundam Res. https://doi.org/10.1016/j.fmre.2022.06.012

    Article  Google Scholar 

  37. Boronin AI, Slavinskaya EM, Figueroba A, Stadnichenko AI, Kardash TY, Stonkus OA, Fedorova EA, Muravev VV, Svetlichnyi VA, Bruix A, Neyman KM (2021) CO oxidation activity of Pt/CeO2 catalysts below 0 °C: platinum loading effects. Appl Catal B 286:119931. https://doi.org/10.1016/j.apcatb.2021.119931

    Article  CAS  Google Scholar 

  38. Krehula S, Musi S (2008) Influence of aging in an alkaline medium on the microstructural properties of α-FeOOH. J Cryst Growth 310(2):513–520. https://doi.org/10.1016/j.jcrysgro.2007.10.072

    Article  CAS  Google Scholar 

  39. Li S, Jia M, Gao J, Ping W, Zhang W (2015) Infrared studies of the promoting role of water on the reactivity of Pt/FeOx catalyst in low-temperature oxidation of carbon monoxide. J Phys Chem C 119(5):2483–2490. https://doi.org/10.1021/jp510261w

    Article  CAS  Google Scholar 

  40. Boily J-F, Felmy AR (2008) On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: a FTIR spectroscopic investigation of surface O-H stretching vibrations. Geochim Cosmochim Acta 72(14):3338–3357. https://doi.org/10.1016/j.gca.2008.04.022

    Article  CAS  Google Scholar 

  41. Pedrosa J, Costa BFO, Portugal A, Durães L (2015) Controlled phase formation of nanocrystalline iron oxides/hydroxides in solution-An insight on the phase transformation mechanisms. Mater Chem Phys 163:88–98. https://doi.org/10.1016/j.matchemphys.2015.07.018

    Article  CAS  Google Scholar 

  42. Mohamed R, El-Maghrabi HH, Riad M, Mikhail S (2017) Environmental friendly FeOOH adsorbent materials preparation, characterization and mathematical kinetics adsorption data. J Water Process Eng 16:212–222. https://doi.org/10.1016/j.jwpe.2017.01.005

    Article  Google Scholar 

  43. Li P, Du L, Jing J, Ding X, Shao S, Jiao W, Liu Y (2021) Preparation of FeOOH nanoparticles using an impinging stream-rotating packed bed and their catalytic activity for ozonation of nitrobenzene. J Taiwan Inst Chem Eng 127:102–108. https://doi.org/10.1016/j.jtice.2021.08.025

    Article  CAS  Google Scholar 

  44. Lin J, Li L, Qiao B, Guan H, Wang X (2014) Remarkable effects of hydroxyl species on low-temperature CO (preferential) oxidation over Ir/Fe(OH)x catalyst. J Catal 319:142–149. https://doi.org/10.1016/j.jcat.2014.08.011

    Article  CAS  Google Scholar 

  45. Dey S, Dhal GC (2020) Property and structure of various platinum catalysts for low-temperature carbon monoxide oxidations. Mater Today Chem 16:100228. https://doi.org/10.1016/j.mtchem.2019.100228

    Article  CAS  Google Scholar 

  46. Paredes-Nunez A, Lorito D, Schuurman Y, Guilhaume N, Meunier FC (2015) Origins of the poisoning effect of chlorine on the CO hydrogenation activity of alumina-supported cobalt monitored by operando FT-IR spectroscopy. J Catal 329:229–236. https://doi.org/10.1016/j.jcat.2015.05.028

    Article  CAS  Google Scholar 

  47. Nunez NE, Bideberripe HP, Mizrahi M, Martin Ramallo-Lopez J, Casella ML, Siri GJ (2016) CO selective oxidation using Co-promoted Pt/γ-Al2O3 catalysts. Int J Hydrogen Energy 41(42):19005–19013. https://doi.org/10.1016/j.ijhydene.2016.08.170

    Article  CAS  Google Scholar 

  48. Zhao S, Zhang Q, Zhao G, Zhang Y (2020) Hydroxyl enhanced structured Pt/Nix/a-AlOOH catalyst for formaldehyde oxidation at room temperature. Mod Res Catal 9(2):21–34. https://doi.org/10.4236/mrc.2020.92002

    Article  CAS  Google Scholar 

  49. Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. J Am Chem Soc 109(17):5197–5202. https://doi.org/10.1021/ja00251a025

    Article  CAS  Google Scholar 

  50. Liu L, Zhou F, Wang L, Qi X, Shi F, Deng Y (2010) Low-temperature CO oxidation over supported Pt, Pd catalysts: particular role of FeOx support for oxygen supply during reactions. J Catal 274(1):1–10. https://doi.org/10.1016/j.jcat.2010.05.022

    Article  CAS  Google Scholar 

  51. Guan H, Chen Y, Ruan C, Lin J, Su Y, Wang X, Qu L (2020) Versatile application of wet-oxidation for ambient CO abatement over Fe(OH)x supported subnanometer platinum group metal catalysts. Chin J Catal 41(4):613–621. https://doi.org/10.1016/S1872-2067(19)63489-3

    Article  CAS  Google Scholar 

  52. Tanaka KI, He H, Yuan Y (2014) Catalytic oxidation of CO on metals involving an ionic process in the presence of H2O: the role of promoting materials. RSC Adv 5(2):949–959. https://doi.org/10.1039/c4ra08349k

    Article  Google Scholar 

  53. Gonugunta P, Dugulan AI, Bezemer GL, Brück E (2020) Role of surface carboxylate deposition on the deactivation of cobalt on titania Fischer-Tropsch catalysts. Catal Today 369:144–149. https://doi.org/10.1016/j.cattod.2020.04.037

    Article  CAS  Google Scholar 

  54. Pang R, Teramura K, Morishita M, Asakura H, Hosokawa S, Tanaka T (2020) Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Commun Chem 3(1):1–8. https://doi.org/10.1038/s42004-020-00381-2

    Article  CAS  Google Scholar 

  55. Wang C, Gu XK, Yan H, Yue L, Lu J (2016) Water-mediated mars-Van Krevelen mechanism for CO oxidation on ceria supported single-atom Pt1 catalyst. ACS Catal 7(1):887–891. https://doi.org/10.1021/acscatal.6b02685

    Article  CAS  Google Scholar 

  56. Chen Y, Feng Y, Li L, Liu J, Pan X, Liu W, Wei F, Cui Y, Qiao B, Sun X, Li X, Lin J, Lin S, Wang X, Zhang T (2020) Identification of active sites on high-performance Pt/Al2O3 catalyst for cryogenic CO oxidation. ACS Catal 10(15):8815–8824. https://doi.org/10.1021/acscatal.0c02253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (JKA01221712).

Author information

Authors and Affiliations

Authors

Contributions

JL: Conceptualization, Investigation, Methodology, Validation, Date curation, Writing—original draft. ZL: Investigation, Resources. ZX: Investigation, Resources, Writing—review and editing. QS: Investigation, Resources. YZ: Funding acquisition, Investigation. QZ: Conceptualization, Supervision, Resources, Funding acquisition, Project administration, Writing—review and editing.

Corresponding author

Correspondence to Qi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1670 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, Z., Xie, Z. et al. Fe-modified hydroxyl-rich structured Pt/Fe x /γ-Al 2 O 3 /Al catalyst for CO oxidation at room temperature: behavior and mechanism . Reac Kinet Mech Cat 136, 1283–1299 (2023). https://doi.org/10.1007/s11144-023-02404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02404-0

Keywords

Navigation