Skip to main content
Log in

CLFUG: A GIS‐scaleable model of pesticide fate in the soil–groundwater system based on clearance and fugacity paradigms

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A model of pesticide transport through the soil profile based on clearance and fugacity paradigms is presented, and an example of its application in a GIS environment is shown. A validation of the model at the field plot scale is presented using data obtained at a crop in a semiarid irrigated agricultural basin which was treated with Lindane. The adequacy at the regional scale is tested by inspection of the model predictions and the measured concentrations of the pesticide obtained from a regional phreatimetric net. The clearance concept is used to obtain estimates of the volumes of some environmental phases. These are further used to solve the equations of thermodynamic equilibrium at equal fugacity and obtain concentration estimates. The model closely reproduces the observed percolation trends, and is consistent with the regional pattern of Lindane distribution in groundwater. An application of the model as unitary module for the simulation of non‐point pesticide sources in a raster GIS frame is shown. Its performance (run time, data needed, etc.) is comparable to that of other existing algorithms, and presents some advantages to planners and evaluators of environmental quality in that it incorporates an explicit 2‐D approach and allows the identification of polluted areas downslope with respect to those directly treated with the pesticides. Further, it can be implemented in a variety of GIS and spatial data processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Alley, Regional Groundwater Quality (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  2. J. Ares, Bull. Environ. Contam. Toxicol. 6 (1988) 905.

    Google Scholar 

  3. L.J. Blus, Organochlorine pesticides, in: Handbook of Ecotoxicology, eds. D.H. Hoffman, B.A. Ratner, G.A. Burton, Jr. and J. Cairns, Jr. (Lewis, Boca Raton, FL, 1991) chapter 13.

    Google Scholar 

  4. H. Bossel, Modelbildung und Simulation (Vieweg, Braunschweig, 1992).

    Google Scholar 

  5. C.D. Brown and J.M. Hollis, Pest. Sci. 47 (1996) 41.

    Google Scholar 

  6. D.A. Cappannini and P.L. Lores, Los Suelos del Valle Inferior del R´?o Colorado, Prov. Buenos Aires, INTA Colección Suelos #1, Buenos Aires (1967).

    Google Scholar 

  7. C. Cowan, D. Mackay, T.C.J. Feijtel, D. van deMeent, A. Di Guardo, J. Davies and N. Mackay, The multi-media fate model: A vital tool for predicting the fate of chemicals, Environ. Toxicol. Chem. 15 (1996) 1638.

    Google Scholar 

  8. D.J. Cushman and S.D. Ball, Groundwater modeling for risk assessment purposes, Fall Issue Ground Water Monitoring and Remediation, Ontario State Water Control Board (1993).

  9. J.R. Eastman, IDRISI Vers. 4.0. Technical Reference (Clark University, MA, 1992).

    Google Scholar 

  10. J.C. Gasparoni, R.A. Rosell, J.A. Galantini, R. Sánchez, J.O. Iglesias and O. Schvachka, Problemática y descripción de suelos afectados por sales en algunos valles patagónicos, Cur. Int. Capac. Manejo Suelos y Prod. Sustent. Tierr. Regad´?o, Bah´?a Blanca (1994).

    Google Scholar 

  11. J.C. Giddings, Dynamics of Chromatography, Part I (M. Decker, New York, 1965).

    Google Scholar 

  12. R.E. Godagnone, Carta Detallada de Suelos de la Est. Exp. Agropecuaria H. Ascasubi, Pcia de Buenos Aires, Instituto de Suelos CIRN-INTA, Castelar, Buenos Aires (1991).

    Google Scholar 

  13. H.M. Haitjema, O.D.L. Strack and S.R. Kraemer, Demonstration of the analytical element method for wellhead protection, Robert Kerr Environ. Res. Lab., USEPA, EPA 60CySR-94210 (1995).

  14. H.M. Haitjema, J.L. Wittman, V. Kelson and N. Bauch, WHAEM's program documentation for the wellhead analytical element model, CR 818029, Indiana University, Bloomington, IN (1996).

    Google Scholar 

  15. T. Hari, R. von Arx, H.U. Ammon and G. Karlaganis, Environ. Sci. Pollut. Res. 3 (1996) 32.

    Google Scholar 

  16. E.P. Jorgensen, The Poisoned Well (Island Press, Washington, DC, 1989).

    Google Scholar 

  17. J. Kanazawa, Environ. Toxicol. Chem. 8(6) (1989) 477.

    Google Scholar 

  18. S.W. Karichkoff, Chemosphere 10 (1981) 833.

    Google Scholar 

  19. D. Levine, C.T. Hunsaker, S.P. Timmins and J.J. Beauchamp, A geographic information system approach to modeling nutrient and sediment transport, Oak Ridge National Laboratory, Environmental Sciences Division, Publ. no. 3993 (1993).

  20. W. Lik and V. Rapaka, Environ. Toxicol. Chem. 15(7) (1996) 1038.

    Google Scholar 

  21. K. Loague, R.L. Bernknopf, R.E. Green and T.W. Giambelluca, J. Environ. Quality 25 (1996) 475

    Google Scholar 

  22. D. Mackay, Multimedia Environmental Models: The Fugacity Approach (Lewis, 1991) p. 72.

  23. D. Mackay, A. Di Guardo, S. Paterson, G. Kicsi, C. Cowan and D. Kane, Environ. Toxicol. Chem. 15(9) (1996) 1638.

    Google Scholar 

  24. C.T. Miller and W.J. Weber, J. Contam. Hydrol. 1(1/2) (1986) 243.

    Google Scholar 

  25. E. Moeller, J.E. McIntosh and D.D. Van Slyke, J. Clin. Invest. 6 (1928) 427.

    Google Scholar 

  26. J.H. Montgomery and L.M. Welkom, Groundwater Chemicals Desk Reference (Lewis, Chelsea, MI, 1990).

    Google Scholar 

  27. National Space Administration U.S. Government, Global Land 1-KM AVHRR Data Set Project, Earth Resource Obsvervation System (1996).

  28. M.R. Overcash and J.M. Davidson, Environmental Impact of Non-Point Source Pollution (Ann Arbor Science, Ann Arbor, 1980).

    Google Scholar 

  29. R. Patrik, E. Ford and J. Quarles, Groundwater Contamination in the United States, 2nd ed. (University of Philadelphia, 1987).

  30. [30] PATRIOT, Pesticide Assessment Tool for Rating Investigations of Transport, Version 1.20, U.S. EPA Release (November 1994).

  31. M.C. Petach, R.J. Wagenet and S.D. DeGloria, Geoderma 48 (1991) 245.

    Google Scholar 

  32. A.C. Petraseck, L.J. Kugelman, B.M. Austern, T.A. Pressley, L.A. Winslow and R.H. Wise, J. Water Pollut. Contr. Fed. 55(10) (1983) 1286.

    Google Scholar 

  33. S.M. Prinsloo and P.R. de Beer, J. Assoc. Offic. Anal. Chem. 70(5) (1987) 878.

    Google Scholar 

  34. O. Richter, B. Diekkrüger and P. Nörtersheuser, Environmental Fate Modeling of Pesticides (VCH, Weinheim, 1996) p. 226.

    Google Scholar 

  35. R. Rundel, Peakfit Non-Linear Fitting Software - Technical Guide Vers. 3.0 (Jandel Scientific, Madison, 1991).

    Google Scholar 

  36. F.Y. Saleh, K.L. Dickson and J.H. Rodgers, Fate of Lindane in the aquatic environment: rate constants of physical and chemical processes, Institute Appl. Sci., Denton, TX (1981).

    Google Scholar 

  37. R. Sanchez, Suelo, Riego y Fertilizaciön en el Cultivo de Cebolla, INTA H. Ascasubi Exp. St. Tech. Bull. #3 (1993).

  38. R.M. Sanchez, N.A. Pezzola and S.S. Peralta, Estudio de la Altura y Calidad del Agua Freatica en el Area Bajo Riego, INTA Hoja Tec. Est. Exp. H. Ascasubi (1995).

  39. R.C. Sims, J.L. Sims and S.G. Hansen, Soil transport and fate database 2.0 and model management system, Robert Kerr Environ. Res. Lab., Office Research and Development, USEPA (1991).

  40. L.J. Thibodeaux, Chemodynamics. Environmental Movement of Chemicals in Air, Water and Soil (Wiley, New York, 1979).

    Google Scholar 

  41. R.J. Wagenet and J.L. Hutson, J. Environ. Quality 25(3) (1996) 499.

    Google Scholar 

  42. P.A. Wahid and N. Sethunathan, Agric. Food Chem. 27(5) (1979) 1050.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ares, J., Miglierina, A.M., Sánchez, R. et al. CLFUG: A GIS‐scaleable model of pesticide fate in the soil–groundwater system based on clearance and fugacity paradigms. Environmental Modeling & Assessment 3, 95–105 (1998). https://doi.org/10.1023/A:1019058705348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019058705348

Navigation