Skip to main content

Advertisement

Log in

Assessing groundwater quality trends in pumping wells using spatially varying transfer functions

Estimer l’évolution de la qualité d’une eau souterraine par fonctions de transfert

Evaluación de las tendencias de la calidad del agua subterránea en los pozos de bombeo utilizando funciones de transferencia espacialmente variables

利用空间上变化的传递函数评价抽水井地下水水质趋势

Avaliação de tendências na qualidade da água de poços de bombeamento utilizando funções de transferência variantes no espaço

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

When implementing remediation programs to mitigate diffuse-source contamination of aquifers, tools are required to anticipate if the measures are sufficient to meet groundwater quality objectives and, if so, in what time frame. Transfer function methods are an attractive approach, as they are easier to implement than numerical groundwater models. However, transfer function approaches as commonly applied in environmental tracer studies are limited to a homogenous input of solute across the catchment area and a unique transfer compartment. The objective of this study was to develop and test an original approach suitable for the transfer of spatially varying inputs across multiple compartments (e.g. unsaturated and saturated zone). The method makes use of a double convolution equation accounting for transfer across two compartments separately. The modified transfer function approach was applied to the Wohlenschwil aquifer (Switzerland), using a formulation of the exponential model of solute transfer for application to subareas of aquifer catchments. A minimum of information was required: (1) delimitation of the capture zone of the outlet of interest; (2) spatial distribution of historical and future pollution input within the capture zone; (3) contribution of each subarea of the recharge zone to the flow at the outlet; (4) transfer functions of the pollutant in the aquifer. A good fit to historical nitrate concentrations at the pumping well was obtained. This suggests that the modified transfer function approach is suitable to explore the effect of environmental projects on groundwater concentration trends, especially at an early screening stage.

Résumé

Lors de la mise en œuvre de programmes de lutte contre les pollutions diffuses des aquifères, des outils sont nécessaires pour déterminer si les mesures mises en œuvre seront suffisantes pour atteindre les objectifs de qualité des eaux souterraines et, si oui, à quelle échéance temporelle. Les méthodes par fonction de transfert constituent une approche attractive car elles sont à priori plus faciles à mettre en œuvre que les modèles numériques de nappe. Cependant, les approches par fonction de transfert, appliquées couramment dans les études utilisant des traceurs environnementaux, sont limitées à un apport homogène de soluté sur tout le bassin versant et à un unique compartiment de transfert. L’objectif de cette étude est de développer et tester une approche originale adaptée pour le transfert de polluants entrant variant spatialement, et s’écoulant au travers de compartiments multiples (par exemple zones non saturée et saturée). La méthode utilise une équation de double convolution représentant séparément le transfert à travers deux compartiments. L’approche par fonction de transfert modifiée a été appliquée à l’aquifère de Wohlenschwil (Suisse), en utilisant une formulation du modèle exponentiel pour le transfert de soluté avec application à des sous-zones des bassins versants de l’aquifère. Un minimum d’information était requis : (1) délimitation de la zone d’appel du puits d’intérêt ; (2) distribution spatiale d’infiltrations passées et futures de pollution au sein de la zone d’appel ; (3) contribution de chaque sous-zone de la zone de recharge au débit au puits ; (4) fonctions de transfert du polluant dans l’aquifère. Un bon calage avec les historiques de concentrations en nitrate au puits de pompage a été obtenu. Cela suggère que l’approche par fonction de transfert modifiée est adaptée pour explorer les effets des projets environnementaux sur les tendances d’évolution des concentrations au sein des eaux souterraines, particulièrement dans une étape préliminaire au projet.

Resumen

Cuando se implementan programas de remediación para mitigar la contaminación de fuentes difusas en los acuíferos, se requieren herramientas para anticipar si las medidas son suficientes para satisfacer con los objetivos de la calidad de las aguas subterráneas y, en caso afirmativo, en qué plazos. Los métodos de función de transferencia son un enfoque atractivo, ya que son más fáciles de implementar que los modelos numéricos de agua subterránea. Sin embargo, el enfoque de la función de transferencia tal como son aplicadas comúnmente en estudios de seguimiento ambiental se limita a una entrada homogénea de solutos a través de la zona de captación y un único compartimento de transferencia. El objetivo de este estudio fue desarrollar y probar un enfoque original apropiado para la transferencia de las entradas espacialmente variables a través de múltiples compartimentos (por ejemplo zona no saturada y zona saturada). El método hace uso de una ecuación doble de convolución que tiene en cuenta la transferencia a través de dos compartimentos por separado. El enfoque de la función de transferencia modificada se aplicó al acuífero Wohlenschwil (Suiza), usando una formulación de un modelo exponencial de la transferencia de soluto para la aplicación a las subáreas de las cuencas de captación de acuíferos. Se requirió un mínimo de información: (1) la delimitación de la zona de captación de la salida de interés; (2) la distribución espacial de la entrada histórica y futuras de contaminantes dentro de la zona de captación; (3) la contribución de cada subzona de la zona de recarga para el flujo en la salida; (4) funciones de transferencia de contaminantes en el acuífero. Se obtuvo un buen ajuste a las concentraciones históricas de nitratos en el pozo de bombeo. Esto sugiere que el enfoque de la función de transferencia modificada es adecuado para explorar el efecto de los proyectos ambientales sobre las tendencias de concentración de las aguas subterráneas, especialmente en una etapa de detección temprana.

摘要

当实施修复项目以减缓含水层扩散源污染时,如果采取的措施足够满足地下水水质目标,就需要工具进行预测,要是这样,就需要在什么样的时间框架下进行预测。传递函数方法是一个有吸引力的方法,因为其方法比数值地下水模型更容易实施。然而,通常应用在环境示踪研究的传递函数方法受限于汇水区溶质的均匀性输入及独特的传递区划。本研究的目的就是开发和测试适合穿过多区划(例如非饱和带和饱和带)空间上变化的输入项传递的由独创性的方法。方法使用一个双卷积方程,这个双卷积方程可导出分别穿过两个区划的传递。采用应用在含水层汇水区亚区的溶质传递指数模型公式,把改进的传递函数方法用在了(瑞士)Wohlenschwil含水层上。需要的至少信息:1)相关出口捕获带的界定;2)捕获带内过去和将来污染输入的空间分布;3)补给带每个亚区对出口处水流的贡献量;4)含水层中污染物的传递函数。发现对抽水井历史硝酸盐含量拟合的非常好。这表明改进的传递函数方法适合探索环境项目对地下水污染物含量趋势的影响,特别是在屏蔽早期。

Resumo

Na implementação de programas de remediação para mitigar contra fontes difusas de contaminação em aquíferos, são necessárias ferramentas para antecipar se as medidas são suficientes para alcançar os padrões de qualidade da água e, nesse caso, em qual período de tempo. Métodos de funções de transferência são uma abordagem atraente, uma vez que eles são mais simples de se implementar do que modelos numéricos de águas subterrâneas. Entretanto, abordagens de funções de transferência comumente aplicadas como estudos ambientais de traçadores são limitados a entradas homogêneas de solutos através da área de captação e um único compartimento de transferência. O objetivo desse estudo foi desenvolver e testar uma abordagem original apropriada para a transferência de entradas espacialmente variante através de múltiplos compartimentos (p. ex. zonas não saturadas e saturadas). O método faz uso de uma equação de dupla convolução considerada para transferência através de dois compartimentos separados. A abordagem de função de transferência modificada foi aplicada ao aquífero Wohlenschwil (Suíça), utilizando a formulação de um modelo exponencial para transferência de soluto para aplicação a subáreas de captação do aquífero. A mínima informação requerida foi: (1) delimitação da zona de captura da saída de interesse; (2) distribuição espacial das entradas de poluição históricas e futuras da saída de interesse; (3) contribuição e cada subárea da zona de recarga para o fluxo na saída; (4) funções de transferência do poluente no aquífero. Um bom ajuste às concentrações históricas de nitrato no poço de bombeamento foi obtido. Isso sugere que a abordagem de função de transferência modificada é apropriada para explorar o efeito de projetos ambientais em tendências de concentrações de águas subterrâneas, especialmente nos estágios de rastreamento iniciais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage 56, FAO, Rome

  • Badoux V (2007) Analyse des processus advectifs-dispersifs en milieux poreux sous contraintes hydrologiques périodiques: implications pour la protection des captages d’eaux souterraines [Analysis of advective-dispersive processes in porous media under periodic hydrological constraints: implications for the protection of groundwater catchments]. PhD Thesis, University of Neuchâtel, Neuchâtel, Switzerland, 327 pp

  • Baillieux A (2012) Prediction of groundwater quality using transfer functions: an approach to link historical data to future concentrations. PhD Thesis, University of Neuchâtel, Neuchâtel, Switzerland, 152 pp

  • Beltman WHJ, Boesten J, vander Zee S, Quist JJ (1996) Analytical modeling of effects of application frequency on pesticide concentrations in wells. Ground Water 34(3):470–479. doi:10.1111/j.1745-6584.1996.tb02028.x

    Article  Google Scholar 

  • Bohlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland. Water Resour Res 31(9):2319–2339. doi:10.1029/95WR01584

    Article  Google Scholar 

  • Conan C, Bouraoui F, Turpin N, de Marsily G, Bidoglio G (2003) Modeling flow and nitrate fate at catchment scale in Brittany (France). J Environ Qual 32(6):2026–2032. doi:10.2134/jeq2003.2026

    Article  Google Scholar 

  • Cornaton F, Perrochet P (2006) Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. generalized reservoir theory. Adv Water Resour 29(9):1267–1291

    Article  Google Scholar 

  • Eberts SM, Bohlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20(2):263–282. doi:10.1007/s10040-011-0810-6

    Article  Google Scholar 

  • European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communities L327:1–72

  • Fenton O, Schulte RPO, Jordan P, Lalor STJ, Richards KG (2011) Time lag: a methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environ Sci Pol 14(4):419–431. doi:10.1016/j.envsci.2011.03.006

    Article  Google Scholar 

  • Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the United States. J Environ Qual 37(3):1051–1063. doi:10.2134/jeq2006.0561

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974. doi:10.1029/92WR00607

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296

    Article  Google Scholar 

  • Gutierrez A, Baran N (2009) Long-term transfer of diffuse pollution at catchment scale: respective roles of soil, and the unsaturated and saturated zones (Brevilles, France). J Hydrol 369(3–4):381–391. doi:10.1016/j.jhydrol.2009.02.050

    Article  Google Scholar 

  • Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (version 1): an Excel workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Tech Methods Rep 4-F3, 60 pp

  • Jury WA (1982) Simulation of solute transport using a transfer-function model. Water Resour Res 18(2):363–368. doi:10.1029/WR018i002p00363

    Article  Google Scholar 

  • Jury WA, Roth K (1990) Transfer function and solute movement through soil: theory and applications. Birkhäuser, Basel, 228 pp

    Google Scholar 

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ, 325 pp

    Book  Google Scholar 

  • Lerner DN, Papatolios KT (1993) A simple analytical approach for predicting nitrate concentrations in pumped ground water. Ground Water 31(3):370–375. doi:10.1111/j.1745-6584.1993.tb01837.x

    Article  Google Scholar 

  • Liao LX, Green CT, Bekins BA, Bohlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res 48, W00l09. doi:10.1029/2011wr011008

    Google Scholar 

  • Luther KH, Haitjema HM (1998) Numerical experiments on the residence time distributions of heterogeneous groundwatersheds. J Hydrol 207(1–2):1–17. doi:10.1016/S0022-1694(98)00112-7

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. models and their applicability. J Hydrol 57(3–4):207–231. doi:10.1016/0022-1694(82)90147-0.

    Article  Google Scholar 

  • McMahon PB, Dennehy KF, Bruce BW, Bohlke JK, Michel RL, Gurdak JJ, Hurlbut DB (2006) Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour Res 42(3). doi:10.1029/2005WR004417

  • McMahon PB, Burow KR, Kauffman LJ, Eberts SM, Boehlke JK, Gurdak JJ (2008) Simulated response of water quality in public supply wells to land use change. Water Resour Res 44. doi:10.1029/2007WR006731

  • Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39(1):85–96. doi:10.2134/jeq2009.0108

    Article  Google Scholar 

  • Niemi AJ (1977) Residence time distributions of variable flow processes. Int J Appl Radiat Isot 28(10–1):855–860. doi:10.1016/0020-708x(77)90026-6

    Article  Google Scholar 

  • Niemi AJ (1990) Tracer responses and control of vessels with variable flow and volume. Isotopenpraxis 26(9):435–438. doi:10.1080/10256019008624351

    Google Scholar 

  • Nir A (1973) Tracer relations in mixed lakes in non-steady state. J Hydrol 19(1):33–41. doi:10.1016/0022-1694(73)90091-7

    Article  Google Scholar 

  • OFEV (2009) Résultats de l’observatoire national des eaux souterraines (NAQUA): Etat et évolution de 2004 à 2006 [Results of the NAQUA National Groundwater Monitoring: state and evolution from 2004 to 2006]. In: Etat de l’environnement [State of the environment]. Federal Office for the Environment FOEN, Bern, Switzerland, 144 pp

  • Olsthoorn TN (2008) Do a bit more with convolution. Ground Water 46(1):13–22. doi:10.1111/j.1745-6584.2007.00342.x

    Article  Google Scholar 

  • Orban P, Brouyere S, Batlle-Aguilar J, Couturier J, Goderniaux P, Leroy M, Maloszewski P, Dassargues A (2010) Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. J Contam Hydrol 118(1–2):79–93. doi:10.1016/j.jconhyd.2010.08.008

    Article  Google Scholar 

  • Osenbrück K, Fiedler S, Knoller K, Weise SM, Sultenfuss J, Oster H, Strauch G (2006) Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany. Water Resour Res 42(12). doi:10.1029/2006WR004977

  • Owens LB, Shipitalo MJ, Bonta JV (2008) Water quality response times to pasture management changes in small and large watersheds. J Soil Water Conserv 63(5):292–299. doi:10.2489/jswc.63.5.292

    Article  Google Scholar 

  • Ozyurt NN, Bayari CS (2005) Steady- and unsteady-state lumped parameter modelling of tritium and chlorofluorocarbons transport: hypothetical analyses and application to an alpine karst aquifer. Hydrol Process 19(17):3269–3284. doi:10.1002/hyp.5969

    Article  Google Scholar 

  • Prasuhn V, Sieber U (2005) Changes in diffuse phosphorus and nitrogen inputs into surface waters in the Rhine watershed in Switzerland. Aquat Sci 67(3):363–371. doi:10.1007/s00027-005-0774-5

    Article  Google Scholar 

  • Reilly TE, Pollock DW (1996) Sources of water to wells for transient cyclic systems. Ground Water 34(6):979–988. doi:10.1111/j.1745-6584.1996.tb02163.x

    Article  Google Scholar 

  • Richter W, Lillich W (1975) Abriss der hydrogeologie [Handbook of hydrogeology]. Schweizerbarth, Stuttgart, Germany

    Google Scholar 

  • Sousa MR, Jones JP, Frind EO, Rudolph DL (2013) A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. J Contam Hydrol 144(1):138–151. doi:10.1016/j.jconhyd.2012.10.007

    Article  Google Scholar 

  • Stewart IT, Loague K (2004) Assessing ground water vulnerability with the type transfer function model in the San Joaquin Valley, California. J Environ Qual 33(4):1487–1498. doi:10.2134/jeq2004.1487

    Article  Google Scholar 

  • Tomer MD, Burkart MR (2003) Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. J Environ Qual 32(6):2158–2171. doi:10.2134/jeq2003.2158

    Article  Google Scholar 

  • Turnadge C, Smerdon BD (2014) A review of methods for modelling environmental tracers in groundwater: advantages of tracer concentration simulation. J Hydrol 519:3674–3689. doi:10.1016/j.jhydrol.2014.10.056

    Article  Google Scholar 

  • Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34(12):3271–3281. doi:10.1029/98WR02536

    Article  Google Scholar 

  • Visser A et al (2009) Comparison of methods for the detection and extrapolation of trends in groundwater quality. J Environ Monit 11(11):2030–2043. doi:10.1039/B905926A

    Article  Google Scholar 

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: IAEA (ed) Isotopes in hydrology. IAEA, Vienna, pp 355–369

    Google Scholar 

  • Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40(15):4626–4632. doi:10.1021/es060724w

    Article  Google Scholar 

  • World Water Assessment Programme (2009) The United Nations world water development report 3: water in a changing world. UNESCO, Earthscan, Paris

  • Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (H-3 and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240(3–4):187–205. doi:10.1016/S0022-1694(00)00326-7

    Article  Google Scholar 

  • Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry. Elsevier Science, Amsterdam, pp 1–59

    Google Scholar 

  • Zuber A, Maloszewski P, Stichler W, Herrmann A (1986) Tracer relations in variable flow. Paper presented at 5th International Symposium on Underground Water Tracing, Athens, September 2006

  • Zuber A, Rozanski K, Kania J, Purtschert R (2011) On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeol J 19(1):53–69. doi:10.1007/s10040-010-0655-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Swiss Federal Office for the Environment (FOEN) for their collaboration and financial support. Field investigations were carried out with the help of the MSc students Mr. Abraham N’Valoua Bamba, Mr. Marc-Ader Nankam and Mr. Konan Lambert Amani. Leaching data of nitrate calculated with the MODIFFUS program were provided by Mr. Christoph Ziltener of the Landwirtschaftliches Zentrum Liebegg. We would like to thank the land owners Mr. Kurt Steinmann and Mr. Hansjörg Wirth for their collaboration. The authors thank the editor and reviewers for providing valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baillieux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 787 kb)

ESM 2

(XLSX 54378 kb)

Appendix: Mathematical development of the exponential model for the transfer function at localized input zone and outlet

Appendix: Mathematical development of the exponential model for the transfer function at localized input zone and outlet

A saturated aquifer system of length L is assumed with a uniform thickness e, a uniform porosity θ and a uniform surface infiltration rate I (illustration in Fig. 1). This conceptual case has already been introduced by Kazemi et al. (2006), and one part of the mathematical development is taken from this reference—Eqs. (13), (14), (16), (17) and (20). According to the hypothesis of Dupuit, assuming horizontal velocity constant over depth, the Darcy flux over the distance corresponds to q(x) = Ix/e, and the real velocity over the distance x is v(x) = Ix/. The travel time t(x) required for a solute from a point x to reach the outlet at distance L is:

$$ t(x)={\displaystyle \underset{x}{\overset{L}{\int }}}\frac{\mathrm{d}x}{v(x)}=\frac{e\phi }{I}{\displaystyle \underset{x}{\overset{L}{\int }}}\frac{\mathrm{d}x}{x}=\frac{e\phi }{I} \ln \left(\frac{L}{x}\right)={T}_0 \ln \left(\frac{L}{x}\right) $$
(13)

with

$$ {T}_0=\frac{e\phi }{I} $$
(14)

The cumulated flow Q 0z at the outlet (located at distance L) from the surface (z = 0) to a certain depth z is equal to Q 0z = zIL/e. The cumulated recharge Q xL at the surface from an input point x to the outlet (x = L) is Q xL = I(L − x). If z(x) is the depth reached by flows from an input point located at distance x, Q 0z and Q xL are equal and the following relationship can be written as: z(x)IL/e = I(L − x). Equation (15) can be deduced by isolating z(x) from the last relationship:

$$ z(x)=e\left(1-\frac{x}{L}\right) $$
(15)

By combining Eqs. (13) and (15), it follows that:

$$ t(z)={T}_0 \ln \left(\frac{1}{1-\frac{z}{e}}\right) $$
(16)
$$ x(z)=\left(1-\frac{z}{e}\right)L $$
(17)
$$ x(t)=L \exp \left(-\frac{t}{T_0}\right) $$
(18)
$$ z(t)=e\left[1- \exp \left(-\frac{t}{T_0}\right)\right] $$
(19)

As reported by Kazemi et al. (2006), the transit time probability density function is defined as:

$$ \varphi (t)=\frac{1}{Q_0}\frac{\mathrm{d}Q(t)}{\mathrm{d}t} $$
(20)

where Q 0 is the total discharge flow and Q(t) is the portion of discharge flow that has a residence time in the system of less than or equal to t. If solute enters in the same conditions as flow, and if the solute travel has the same characteristics as flow transit, the transit time probability density function ρ(t) is the transfer function g(t) of solute in the aquifer.

The transfer function of solute reaching the outlet and coming from the area bounded by the distances x = x 1 and x = x 2, can be defined as:

$$ \begin{array}{ll}g(t)=\frac{1}{Q_{0_{{\mathrm{X}}_1{\mathrm{X}}_2}}}\cdot \frac{\mathrm{d}{Q}_{{\mathrm{X}}_1{\mathrm{X}}_2}(t)}{\mathrm{d}t}\hfill &, {t}_2\le t\le {t}_1\hfill \end{array} $$
(21)
$$ \begin{array}{ll}g(t)=0\hfill & \hfill \end{array} $$
(22)

; otherwise, with

$$ \begin{array}{ll}\hfill & {t}_1={T}_0 \ln \left(\frac{L}{x_1}\right)\hfill \end{array} $$
(23)
$$ {t}_2={T}_0 \ln \left(\frac{L}{x_2}\right) $$
(24)

where \( {Q}_{0_{{\mathrm{X}}_1{\mathrm{X}}_2}} \) is the total discharge flow at the outlet for water from the subarea of the recharge zone delimited by x 1 and x 2, and \( {Q}_{{\mathrm{X}}_1{\mathrm{X}}_2}(t) \) is the part of the discharge flow that has a residence time in the system in the interval [t 2; t].

Based on Eq. (18), \( {Q}_{0_{{\mathrm{X}}_1{\mathrm{X}}_2}} \) and \( {Q}_{{\mathrm{X}}_1{\mathrm{X}}_2}(t) \) are:

$$ \begin{array}{ll}{Q}_{0_{{\mathrm{X}}_1{\mathrm{X}}_2}}=I\left({x}_2-{x}_1\right)=IL\left[ \exp \left(-\frac{t_2}{T_0}\right)- \exp \left(-\frac{t_1}{T_0}\right)\right]\hfill &, {t}_2\le t\le {t}_1\hfill \end{array} $$
(25)
$$ \begin{array}{ll}{Q}_{{\mathrm{X}}_1{\mathrm{X}}_2}(t)=I\left({x}_2-x(t)\right)=IL\left[ \exp \left(-\frac{t_2}{T_0}\right)- \exp \left(-\frac{t}{T_0}\right)\right]\hfill &, {t}_2\le t\le {t}_1\hfill \end{array} $$
(26)

The transfer function \( {g}_{{\mathrm{t}}_1{\mathrm{t}}_2}(t) \) of solute reaching the outlet in the travel time interval [t 2; t 1] can be derived from the discretization of Eq. (21), inserting Eqs. (25) and (26):

$$ \begin{array}{ll}{g}_{{\mathrm{t}}_1{\mathrm{t}}_2}(t)=\frac{ \exp \left(-\frac{t}{T_0}\right)}{T_0\left[ \exp \left(-\frac{t_2}{T_0}\right)- \exp \left(-\frac{t_1}{T_0}\right)\right]}\hfill &, {t}_2\le t\le {t}_1\hfill \end{array} $$
(27)
$$ \begin{array}{ll}{g}_{{\mathrm{t}}_1{\mathrm{t}}_2}(t)=0\hfill &, \mathrm{otherwise}\hfill \end{array} $$
(28)

Inserting Eq. (16) in Eq. (27), the transfer function \( {g}_{{\mathrm{z}}_1{\mathrm{z}}_2}(t) \) of solute reaching the outlet at the depth interval [z 2; z 1] is:

$$ \begin{array}{ll}{g}_{{\mathrm{z}}_1{\mathrm{z}}_2}(t)=\frac{ \exp \left(-\frac{t}{T_0}\right)}{T_0\left(\frac{z_1}{e}-\frac{z_2}{e}\right)}\hfill &, {\mathrm{t}}_2\le \mathrm{t}\le {\mathrm{t}}_1\hfill \end{array} $$
(29)
$$ \begin{array}{ll}{g}_{{\mathrm{z}}_1{\mathrm{z}}_2}(t)=0\hfill & \hfill \end{array} $$
(30)

; otherwise, with

$$ \begin{array}{ll}\hfill & {t}_1={T}_0 \ln \left(\frac{1}{1-\frac{z_1}{e}}\right)\hfill \\ {}\hfill & {t}_2={T}_0 \ln \left(\frac{1}{1-\frac{z_2}{e}}\right)\hfill \end{array} $$

Inserting Eq. (13) in Eq. (27), the transfer function \( {g}_{{\mathrm{x}}_1{\mathrm{x}}_2}(t) \) of solute from the subarea of the recharge zone delimited by the distance interval [x 2; x 1] is:

$$ \begin{array}{ll}{g}_{{\mathrm{x}}_1{\mathrm{x}}_2}(t)=\frac{L \exp \left(-\frac{t}{T_0}\right)}{T_0\left({x}_2-{x}_1\right)}\hfill &, {t}_2\le t\le {t}_1\hfill \end{array} $$
(31)
$$ \begin{array}{ll}{g}_{{\mathrm{x}}_1{\mathrm{x}}_2}(t)=0\hfill & \hfill \end{array} $$
(32)

; otherwise, with

$$ \begin{array}{ll}\hfill & {t}_1={T}_0 \ln \left(\frac{L}{x_1}\right)\hfill \end{array} $$
(33)
$$ {t}_2={T}_0 \ln \left(\frac{L}{x_2}\right) $$
(34)

Applying the mean value theorem, the average time of travel \( {\overline{t(z)}}_{{\mathrm{z}}_1{\mathrm{z}}_2} \) over the depth interval [z 1; z 2] is the mean value of the function t(z) (Eq. 16) in the interval [z 1; z 2], which corresponds to:

$$ {\overline{t(z)}}_{{\mathrm{z}}_1{\mathrm{z}}_2}=\frac{1}{z_1-{z}_2}{\displaystyle \underset{z_2}{\overset{z_1}{\int }}}t(z)\mathrm{d}z=\frac{1}{z_1-{z}_2}{\displaystyle \underset{z_2}{\overset{z_1}{\int }}}{T}_0 \ln \left(\frac{1}{1-\frac{z}{e}}\right)\mathrm{d}z $$
(35)
$$ {\overline{t(z)}}_{{\mathrm{z}}_1{\mathrm{z}}_2}=\frac{e}{z_1-{z}_2}{T}_0\left[\left(1-\frac{z_1}{e}\right) \ln \left(1-\frac{z_1}{e}\right)-\left(1-\frac{z_2}{e}\right) \ln \left(1-\frac{z_2}{e}\right)+\frac{z_1-{z}_2}{e}\right] $$
(36)

Similarly, the average travel time \( {\overline{t(x)}}_{{\mathrm{x}}_1{\mathrm{x}}_2} \) for solute from an input zone defined in the interval [x 1; x 2] is:

$$ {\overline{t(x)}}_{{\mathrm{x}}_1{\mathrm{x}}_2}=\frac{1}{x_2-{x}_1}{\displaystyle \underset{x_1}{\overset{x_2}{\int }}}t(x)\mathrm{d}x=\frac{1}{x_2-{x}_1}{\displaystyle \underset{x_1}{\overset{x_2}{\int }}}{T}_0 \ln \left(\frac{L}{x}\right)\mathrm{d}x $$
(37)
$$ {\overline{t(x)}}_{{\mathrm{x}}_1{\mathrm{x}}_2}=\frac{T_0}{x_2-{x}_1}\left[{x}_2\left( \ln \left(\frac{L}{x_2}\right)+1\right)-{x}_1\left( \ln \left(\frac{L}{x_1}\right)+1\right)\right] $$
(38)
$$ {\overline{t(x)}}_{{\mathrm{x}}_1{\mathrm{x}}_2}={T}_0\left[1 + \ln (L)+\frac{x_1 \ln \left({x}_1\right)-{x}_2 \ln \left({x}_2\right)}{x_2-{x}_1}\right] $$
(39)

From a practical point of view, Eq. (39) is relevant to calculate the mean travel time of solute pumped at a pumping well, where the screen section of the well corresponds to a certain depth interval of the aquifer. The mean travel time provides a first approximation of the order of magnitude of reaction time of the aquifer system (Fenton et al. 2011; Sousa et al. 2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baillieux, A., Moeck, C., Perrochet, P. et al. Assessing groundwater quality trends in pumping wells using spatially varying transfer functions. Hydrogeol J 23, 1449–1463 (2015). https://doi.org/10.1007/s10040-015-1279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1279-5

Keywords

Navigation