Skip to main content
Log in

The structure and electronic characteristics of metallosilicates with ZSM-5 structure

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report here the result of a computer- assisted study of metallosilicates by applying molecular dynamics (MD) and quantum chemical (QC) methods. MD calculations are used to study the local relaxation in the T12 site of the ZSM-5 structure, when Si is substituted by different metals such as Ti4+, Al3+, Ga3+, and Fe3+. QC calculations by density functional theory have been performed on the cluster models generated from the structure obtained by MD calculations. The calculation indicates that the net charge on a MO4 (where M = Ti, Al, Ga, and Fe) group and the molecular electrostatic potential values are good parameters to assess the acidic properties of metallosilicates, as shown by their correlations to the reported experimental acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Heinemann,Catal.Rev. Sci. Eng. 23 (1981) 651.

    Google Scholar 

  2. M.E. Davis, C. Saldarriaga, C. Montes, J. Garces and C. Crowder, Nature 331 (1988) 698.

    Article  CAS  Google Scholar 

  3. M.E. Leonowicz, J.A. Lawton, S.L. Lawton and M.K. Rubin, Science 264 (1994) 1910.

    CAS  Google Scholar 

  4. P. Ratnasamy and R.Kumar, Catal. Today 9 (1991) 329.

    Article  Google Scholar 

  5. A.V. Ramaswamy and S. Sivasanker, Catal. Lett. 22 (1993) 239.

    Article  CAS  Google Scholar 

  6. P. Behrens, J. Felsche, S. Vetter, G. Schulz-Ekloff, N.I. Jaeger and W.Niemann, J. Chem. Soc. Chem.Commun. (1991) 678.

  7. D. Trong On, A. Bittar, S. Kaliaguine and L. Bonneviot, Catal. Lett. 16 (1992) 85.

    Article  CAS  Google Scholar 

  8. K. Kawamura, in: Molecular Dynamics Simulations, eds. F. Yonezawa (Springer, Berlin, 1990) p. 88.

    Google Scholar 

  9. L. Verlet, Phys.Rev. 98 (1967) 159.

    Google Scholar 

  10. P. Ewald, Ann. Phys. 64 (1921) 253.

    Google Scholar 

  11. A. Miyamoto and M. Kubo, SekiyuGakkaishi 36 (1993) 282.

    CAS  Google Scholar 

  12. A. Miyamoto, H. Himei, Y. Oka, E. Maruya, M. Katagiri, R. Vetrivel and M.Kubo, Catal. Today 22 (1994) 87.

    Article  CAS  Google Scholar 

  13. A. Miyamoto, M. Kubo, K. Matsuba and T. Inui, in: Computer Aided Innovation of New Materials II, eds. M. Doyama, J. Kihara, M. Tanaka and R. Yamamoto (Elsevier, Amsterdam, 1993) p. 1025.

    Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. B 136 (1964) 864.

    Article  Google Scholar 

  15. W. Kohn and L.J. Sham, Phys.Rev.A140 (1965) 508.

    Google Scholar 

  16. D Mol version 2.3.5(Biosym Technologies, San Diego, 1993).

  17. B. Delley, J.Chem. Phys. 92 (1990) 508.

    Article  CAS  Google Scholar 

  18. L. Hedin and B.I. Lundqvist, J. Phys.C4 (1971) 2064.

    Article  Google Scholar 

  19. A. Becke, J. Chem. Phys. 88 (1988) 2547.

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang and R.G. Parr, Phys.Rev. B 37 (1988) 786.

    Google Scholar 

  21. R. Miura, H. Yamano, R.M. Katagiri, M. Kubo, R. Vetrivel and A.Miyamoto,Catal. Today 23 (1995) 409.

    Article  CAS  Google Scholar 

  22. E.G. Derouane and J.J. Fripiat, Zeolites 5 (1985) 165.

    Article  CAS  Google Scholar 

  23. A.E. Alvarado-Swaisgood, M.K. Barr, P.J. Hay and A. Redondo, J. Phys. Chem. 95 (1991) 10031.

    Article  CAS  Google Scholar 

  24. D.H. Olson, G.T. Kokotailo and S.L. Lawton, J. Phys. Chem. 85 (1981) 2238.

    Article  CAS  Google Scholar 

  25. J. Sauer, J. Phys.Chem. 91 (1987) 2315.

    Article  CAS  Google Scholar 

  26. H.V. Brand, L.A. Curtiss and L.E. Iton, J. Phys. Chem. 96 (1992) 7725.

    Article  CAS  Google Scholar 

  27. A. Chatterjee and R.Vetrivel, MicroporousMater. 3 (1994) 211.

    Article  CAS  Google Scholar 

  28. Y. Oumi, K. Matsuba, M. Kubo, T. Inui and A. Miyamoto, MicroporousMater. 4 (1995) 53.

    Article  CAS  Google Scholar 

  29. Kagaku Binran Kisohen II, eds. Chem. Soc. of Japan (Maruzen, Tokyo, 1993) p. 717.

  30. T. Inui and K.Matsuba, Stud. Surf. Sci. Catal. 90 (1994) 355.

    CAS  Google Scholar 

  31. E. Scrocco and J. Tomasi, Adv.Quantum Chem. 11 (1978) 115.

    Article  CAS  Google Scholar 

  32. J. Tomasi, in: Chemical Applications of Atomic and Molecular Electrostatic Potentials, eds. P. Politzer and D.G. Truhlar (PlenumPress, NewYork, 1981) p. 151.

    Google Scholar 

  33. G.Ná ray-Szab_o and G.G. Ferenczy, Chem.Rev.95 (1995) 829.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oumi, Y., Yamadaya, M., Kanougi, T. et al. The structure and electronic characteristics of metallosilicates with ZSM-5 structure. Catalysis Letters 45, 21–26 (1997). https://doi.org/10.1023/A:1019047008150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019047008150

Keywords

Navigation