Skip to main content
Log in

Novel type of heterogenized CuCl2 catalytic systems for oxidative carbonylation of methanol

  • Published:
Catalysis Surveys from Japan Aims and scope Submit manuscript

Abstract

A novel type of heterogenized CuCl2 catalysts was designed for the oxidative carbonylation of methanol to dimethyl carbonate (DMC) taking account of the plausible reaction mechanism and intermediates. To prevent severe corrosion of the reaction equipment materials due to Cl while keeping the catalytic activity of the homogeneous CuCl2 catalyst, we adopted, as supports (or ligands) of CuCl2, four polymers, bearing a 2,2′-bipyridine (bpy) or pyridine (py) unit, namely, poly(2,2′-bipyridine-5,5′-diyl) (Pbpy), poly(pyridine-2,5-diyl) (Ppy), poly(N,N′-bisphenylene-2,2′-bipyridine-4,4′-dicarboxylic amide) (Bpya), and poly(4-methyl-4′-vinyl-2,2′-bipyridine) (Pvbpy), together with one chelate compound, 8-quinolinol. The catalytic activity, stability of heterogenized CuCl2 and their corrosivities to stainless steels were examined in the liquid-phase reaction of the oxidative carbonylation of methanol. These polymer-supported catalysts showed considerable catalytic activity and stability for the DMC synthesis. In particular, the Pbpy-CuCl2 and Ppy-CuCl2 catalysts exhibited high DMC yields and selectivity comparable to those of the homogeneous CuCl2 catalyst. This high activity appears to be associated with the presence of the π-conjugated system in the polymers, which affect the redox reactions of Cu involved in the catalytic reaction. All of the polymer-supported CuCl2 catalysts could be easily recycled after filtration, and the initial catalytic activity was maintained after three times of use. The corrosive characters of the catalysts were closely related to CuCl2 leaching from the supports, which reflects the ability of supports to coordinate Cu. These experimental results suggest that both the electronic structure and the coordination ability of the polymer supports are key factors for the development of an effective catalytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hjortkjaer, M.S. Scurrell and P. Simonsen, J. Mol. Catal. 10 (1980) 127 ;C. Dossi, A. Fusi, L. Garlaschelli, R. Psaro and R. Ugo, Stud. Surf. Sci. Catal. 75 (1993) 2345; M. Lenarda, R. Ganzerla, S. Paganelli, L. Storaro and R. Zanoni, J. Mol. Catal. A 105 (1996) 117; T.A. Kainulainen, M.K. Niemelae and A.O.I. Krause, J. Mol. Catal. A 122 (1997) 39, and references therein.

    Google Scholar 

  2. N. Yoneda, Y. Nakagawa and T. Mimami, Catal. Today 36 (1997) 357.

    Google Scholar 

  3. D.C. Sherrington and S. Simpson, React. Polym. 19 (1993) 13; Y. Kurusu and Y. Masuyama, J. Macromol. Sci. Chem. A 26 (1989) 391; K. Nomiya, H. Murasaki and M. Miwa, Polyhedron 5 (1986) 1031; J.P.J. Verlaan, J.P.C. Bootsma, C.E. Koning and G. Challa, J. Mol. Catal. 14 (1982) 211; R.S. Drago, E.D. Nyberg, A.E. A'mma and A. Zombeck, Inorg. Chem. 20 (1981) 641.

    Google Scholar 

  4. EP Patent 567 331 (1993), to Chiyoda Chemical Engineering Construction Co.

  5. DE Patent 2 437 133 (1975), to SNAM Progetti S.p.A.

  6. EP Patent 534 545 (1993), to ENI Group Co.

  7. US Patent 5 004 827 (1980), to Dow Chemical Co.

  8. K. Tomishige, T. Sakaihori, S. Sakai and K. Fujimoto, Appl. Catal. A 181 (1999) 95.

    Google Scholar 

  9. S.T. King, Catal. Today 33 (1997) 173.

    Google Scholar 

  10. T. Matsuzaki and A. Nakamura, Catal. Surv. Japan 1 (1997) 77.

    Google Scholar 

  11. US Patent 4 318 391 (1980), to Anic, S.p.A.

  12. JP Patent Open 08 325 204 (1996), to Daicel Chemical Industries Co.

  13. U. Romano, R. Tesel, M.M. Mauri and P. Rebora, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 396.

    Google Scholar 

  14. A. Moreau, Electrochim. Acta 26 (1981) 1609.

    Google Scholar 

  15. Y. Sato, M. Kagotani, T. Yamamoto and Y. Souma, Appl. Catal. A 185 (1999) 219.

    Google Scholar 

  16. Y. Sato, T. Yamamoto and Y. Souma, Catal. Lett. 65 (2000) 123.

    Google Scholar 

  17. Y. Sato, M. Kagotani and Y. Souma, J. Mol. Catal. A 151 (2000) 79.

    Google Scholar 

  18. Y. Sato, M. Kagotani and Y. Souma, J. Jpn. Petrol. Inst. 43 (2000) 75.

    Google Scholar 

  19. J.C. Fanning and H.B. Jonassen, J. Inorg. Nucl. Chem. 25 (1963) 29.

    Google Scholar 

  20. T. Yamamoto, T. Maruyama, Z.-H. Zhou, T. Ito, T. Fukuda, Y. Yoneda, F. Begum, T. Ikeda, S. Sasaki, H. Takezoe, A. Fukuda and K. Kubota, J. Am. Chem. Soc. 116 (1994) 1832.

    Google Scholar 

  21. G. Atkinson and J.E. Baumann, Inorg. Chem. 1 (1962) 900.

    Google Scholar 

  22. J. Bjerrum, Chem. Rev. 46 (1950) 381.

    Google Scholar 

  23. W.D. Johnson and H. Freiser, J. Am. Chem. Soc. 74 (1952) 5239.

    Google Scholar 

  24. B. Casal, E. Ruiz-Hitzky, M. Crespin, D. Tinet and J.C. Galvan, J. Chem. Soc. Faraday Trans.1 (85) (1989) 4167.

    Google Scholar 

  25. S.C. Yu and W.K. Chan, Macromol. Rapid Commun. 18 (1997) 213.

    Google Scholar 

  26. S.-H. Park, M.C. Milletti and N. Gardner, Polyhedron 17 (1998) 1267.

    Google Scholar 

  27. T. Maruyama and T. Yamamoto, J. Phys. Chem. B 101 (1997) 3806; T. Maruyama and T. Yamamoto, Inorg. Chem. Acta 238 (1995) 9.

    Google Scholar 

  28. J. Smidt, W. Hafner, R. Jirra, J. Sedlmeier, R. Sieber, R. Ruttinger and H. Kojer, Angew. Chem. 71 (1959) 176.

    Google Scholar 

  29. K. Fujimoto and T. Kunugi, J. Jpn. Petrol. Inst. 17 (1974) 630.

    Google Scholar 

  30. V.K. Kaushik, Spectrochim. Acta. Part B 44 (1984) 581.

    Google Scholar 

  31. N. Okuyama, Y. Sato, T. Yamamoto and Y. Souma, submitted.

  32. H. Masuda, K. Machida, M. Munakata, S. Kitagawa and H. Shimono, J. Chem. Soc. Dalton Trans. (1988) 1907; M. Munakata, S. Kitagawa, S. Kosome and A. Asahara, Inorg. Chem. 25 (1986) 2622.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Souma, Y. Novel type of heterogenized CuCl2 catalytic systems for oxidative carbonylation of methanol. Catalysis Surveys from Asia 4, 65–74 (2000). https://doi.org/10.1023/A:1019044306856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019044306856

Navigation