Skip to main content
Log in

Automatic domain decomposition on unstructured grids (DOUG)

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper describes a parallel iterative solver for finite element discretisations of elliptic partial differential equations on 2D and 3D domains using unstructured grids. The discretisation of the PDE is assumed to be given in the form of element stiffness matrices and the solver is automatic in the sense that it requires minimal additional information about the PDE and the geometry of the domain. The solver parallelises matrix–vector operations required by iterative methods and provides parallel additive Schwarz preconditioners. Parallelisation is implemented through MPI. The paper contains numerical experiments showing almost optimal speedup on unstructured mesh problems on a range of four platforms and in addition gives illustrations of the use of the package to investigate several questions of current interest in the analysis of Schwarz methods. The package is available in public domain from the home page http://www.maths.bath.ac.uk/mjh/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr and J. W. Painter, The multi-grid method for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput. 2 (1981) 430–454.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. F. Ashby, R. D. Falgout, S. G. Smith and A. F. B. Tompson, Modeling groundwater flow on MPPS, in: Proceedings of the Scalable Parallel Libraries Conference (1993).

  3. R. E. Bank and J. Xu, An algorithm for coarsening unstructured matrices, Numer. Math. 73 (1996) 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. F. Carey and H. T. Dinh, Grading functions and mesh redistribution, SIAM J. Numer. Anal. 22 (1985) 1028–1040.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. F. Chan, S. Go and J. Zou, Multilevel domain decomposition and multigrid methods for unstructured meshes: Algorithms and theory, in: Proceedings of the 8th International Conference on Domain Decomposition, eds. R. Glowinski, J. Périaux, Z.-C. Shi and O. B. Widlund (Wiley, Chichester, 1996).

    Google Scholar 

  6. T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in: Acta Numerica, ed. A. Iserles (Cambridge University Press, Cambridge, 1994) pp. 61–143.

    Google Scholar 

  7. T. F. Chan, T. P. Mathew and J. P. Shao, Efficient variants of the vertex space domain decomposition algorithm, SIAM J. Sci. Comput. 15 (1994) 1349–1374.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. F. Chan and J. P. Shao, Parallel complexity of domain decomposition methods and optimal coarse grid size, Parallel Comput. 21 (1995) 1033–1049.

    Article  MathSciNet  Google Scholar 

  9. T. F. Chan and B. Smith, Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes, Contemporary Mathematics 180 (1994) 175–189.

    MATH  MathSciNet  Google Scholar 

  10. T. F. Chan, B. Smith and J. Zou, Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids, Numer. Math. 73 (1996) 149–167.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. F. Chan and J. Zou, Additive Schwarz domain decomposition methods for elliptic problems on unstructured meshes, Numer. Algorithms 8 (1994) 329–346.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. K. Coomer and I. G. Graham, Domain decomposition methods for device modelling, in: Domain Decomposition Methods in Science and Engineering, eds. D. Keyes and J. Xu (Amer. Math. Soc., Providence, RI, 1995).

    Google Scholar 

  13. R. K. Coomer and I. G. Graham, Massively parallel methods for semiconductor device modelling, Comput. 56 (1996) 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices (Oxford University Press, Oxford, 1986).

    MATH  Google Scholar 

  15. C. R. I. Emson, J. Simkin and C. W. Trowbridge, A status report on electromagnetic field computation, IEEE Trans. Magnetics 30 (1994) 1533–1540.

    Article  Google Scholar 

  16. G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  17. I. G. Graham and M. J. Hagger, Additive Schwarz, CG and discontinuous coefficients, in: Proceedings of the 9th International Conference on Domain Decomposition Methods (1997).

  18. I. G. Graham and M. J. Hagger, Unstructured additive Schwarz–CG method for elliptic problems with highly discontinuous coefficients, SIAM J. Sci. Comput. (1997, to appear).

  19. H. Guillard, Node-nested multi-grid method with Delaunay coarsening, Technical Report, INRIA, Sophia Antipolis, France (1993).

    Google Scholar 

  20. M. J. Hagger, Iterative solution of large, sparse systems of equations, arising in groundwater flow models, Ph. D. thesis, University of Bath (1995).

  21. B. Heise, Parallel solvers for FEM–BEM equations with applications to non-linear magnetic field problems, in: Numerical Treatment of Coupled Systems, Notes on Numerical Fluid Dynamics 51, eds. W. Hackbusch and G. Wittum (Vieweg, Braunschweig, 1995).

    Google Scholar 

  22. B. Heise and M. Kuhn, Parallel solves for linear and non-linear exterior magnetic field problems based on upon coupled FE/BE formulations, Technical Report, Institutsbericht Nr. 486, Johannes-Kepler-Universität, Linz (1995).

  23. M. C. Hill, Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure, Water Resources Res. 26 (1990) 1961–1969.

    Article  Google Scholar 

  24. G. Karypis and V. Kumar, METIS: Unstructured graph partitioning and sparse matrix ordering system, Department Computer Science, University of Minnesota, Minneapolis (August 1995).

    Google Scholar 

  25. Y. Saad and M. H. Shultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  26. B. F. Smith, An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems, SIAM J. Sci. Statist. Comput. 13 (1992) 364–378.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. F. Smith, P. E. Bjorstad and W. D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  28. H. A. Van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J. 24 (1981) 167–172.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagger, M. Automatic domain decomposition on unstructured grids (DOUG). Advances in Computational Mathematics 9, 281–310 (1998). https://doi.org/10.1023/A:1018997725374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018997725374

Navigation