Skip to main content

Parallel Finite Cell Method with Adaptive Geometric Multigrid

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing (Euro-Par 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12247))

Included in the following conference series:

Abstract

Generation of appropriate computational meshes in the context of numerical methods for partial differential equations is technical and laborious and has motivated a class of advanced discretization methods commonly referred to as unfitted finite element methods. To this end, the finite cell method (FCM) combines high-order FEM, adaptive quadrature integration and weak imposition of boundary conditions to embed a physical domain into a structured background mesh. While unfortunate cut configurations in unfitted finite element methods lead to severely ill-conditioned system matrices that pose challenges to iterative solvers, such methods permit the use of optimized algorithms and data patterns in order to obtain a scalable implementation. In this work, we employ linear octrees for handling the finite cell discretization that allow for parallel scalability, adaptive refinement and efficient computation on the commonly regular background grid. We present a parallel adaptive geometric multigrid with Schwarz smoothers for the solution of the resultant system of the Laplace operator. We focus on exploiting the hierarchical nature of space tree data structures for the generation of the required multigrid spaces and discuss the scalable and robust extension of the methods across process interfaces. We present both the weak and strong scaling of our implementation up to more than a billion degrees of freedom on distributed-memory clusters.

Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in the collaborative research center SFB 837 Interaction Modeling in Mechanized Tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babuška, I.: The finite element method with penalty. Math. Comput. 27(122), 221–228 (1973)

    Article  MathSciNet  Google Scholar 

  2. Belytschko, T., Chen, J.: Meshfree and Particle Methods. Wiley, Chichester (2009)

    Google Scholar 

  3. Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Eng. 50(4), 993–1013 (2001)

    Article  Google Scholar 

  4. Burman, E.: Ghost penalty. C. R. Math. 348(21), 1217–1220 (2010)

    Article  MathSciNet  Google Scholar 

  5. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Meth. Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  Google Scholar 

  6. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199(41–44), 2680–2686 (2010)

    Article  MathSciNet  Google Scholar 

  7. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)

    Article  MathSciNet  Google Scholar 

  8. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Int. J. Numer. Meth. Eng. 78(2), 229–252 (2009)

    Article  MathSciNet  Google Scholar 

  10. Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197(45–48), 3768–3782 (2008)

    Article  MathSciNet  Google Scholar 

  11. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Meth. Eng. 83(7), 877–898 (2010)

    Article  MathSciNet  Google Scholar 

  12. Fernández-Méndez, S., Huerta, A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 193(12–14), 1257–1275 (2004)

    Article  MathSciNet  Google Scholar 

  13. Flemisch, B., Wohlmuth, B.I.: Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput. Methods Appl. Mech. Eng. 196(8), 1589–1602 (2007)

    Article  MathSciNet  Google Scholar 

  14. Glowinski, R., Kuznetsov, Y.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196(8), 1498–1506 (2007)

    Article  MathSciNet  Google Scholar 

  15. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method part V: boundary conditions. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 519–542. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55627-2_27

    Chapter  Google Scholar 

  16. Hackbusch, W.: Multi-Grid Methods and Applications, vol. 4. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-02427-0

    Book  MATH  Google Scholar 

  17. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  19. Jomo, J.N., et al.: Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elem. Anal. Des. 163, 14–30 (2019)

    Article  Google Scholar 

  20. Jomo, J.N., et al.: Parallelization of the multi-level HP-adaptive finite cell method. Comput. Math. Appl. 74(1), 126–142 (2017)

    Article  MathSciNet  Google Scholar 

  21. Nitsche, J.: Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semi. Univ. Hamburg 36, 9–15 (1971). https://doi.org/10.1007/BF02995904

    Article  MATH  Google Scholar 

  22. Parvizian, J., Düster, A., Rank, E.: Finite cell method. Comput. Mech. 41(1), 121–133 (2007). https://doi.org/10.1007/s00466-007-0173-y

    Article  MathSciNet  MATH  Google Scholar 

  23. de Prenter, F., et al.: Multigrid solvers for immersed finite element methods and immersed isogeometric analysis. Comput. Mech. 65(3), 807–838 (2019). https://doi.org/10.1007/s00466-019-01796-y

    Article  MathSciNet  Google Scholar 

  24. Rabczuk, T., Areias, P., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Meth. Eng. 72(5), 524–548 (2007)

    Article  MathSciNet  Google Scholar 

  25. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  26. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010)

    Article  MathSciNet  Google Scholar 

  27. Schillinger, D., Ruess, M.: The finite cell method: a review in the context of higher-order structural analysis of cad and image-based geometric models. Arch. Comput. Methods Eng. 22(3), 391–455 (2015). https://doi.org/10.1007/s11831-014-9115-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  29. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE Computer Society Press (2012)

    Google Scholar 

  30. Zhu, T., Atluri, S.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21(3), 211–222 (1998). https://doi.org/10.1007/s004660050296

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in the framework of subproject C4 of the collaborative research center SFB 837 Interaction Modeling in Mechanized Tunneling. This support is gratefully acknowledged. We also gratefully acknowledge the computing time on the computing cluster of the SFB837 and the Department of Civil and Environmental Engineering at Ruhr University Bochum, which has been employed for the presented studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saberi, S., Vogel, A., Meschke, G. (2020). Parallel Finite Cell Method with Adaptive Geometric Multigrid. In: Malawski, M., Rzadca, K. (eds) Euro-Par 2020: Parallel Processing. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12247. Springer, Cham. https://doi.org/10.1007/978-3-030-57675-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57675-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57674-5

  • Online ISBN: 978-3-030-57675-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics