Skip to main content
Log in

Acidic Fibroblast Growth Factor: Evaluation of Topical Formulations in a Diabetic Mouse Wound Healing Model

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The efficacy of topical formulations of acidic fibroblast growth factor (aFGF) in healing of full-thickness wounds has been studied in a diabetic db + /db+ mouse model. The effect of several formulation variables, dose, and application frequency was examined. It was found that wound healing in diabetic animals treated with aFGF or placebo was slower than in their nondiabetic littermates. The availability of aFGF from the viscous vehicle employed in this study (1% hydroxyethyl cellulose) was demonstrated in vitro using diffusion cells. The viscous formulation of aFGF was equally effective in wound healing as a nonviscous formulation in phosphate-buffered saline. A formulation containing heparin (necessary for full biological and conformational stability of aFGF) at a mass ratio of 3:1 to aFGF was more efficacious than formulations with lower heparin: aFGF ratios. Wounds treated with three doses of 3.0 µg/cm2 aFGF healed faster than those treated with a single dose of 3.0 µg/cm2 aFGF. Three applications of 3.0 or 0.6 µg/cm2 aFGF were equally effective in accelerating wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Gospodarowicz. Fibroblast growth factor. Chemical structure and biologic function. Clin. Orthop. Relat. R 257:231–248 (1990).

    Google Scholar 

  2. P. ten Dijke and K. K. Iwata. Growth factor for wound healing. Biotechnology 7:793–798 (1989).

    Google Scholar 

  3. A. Rashidbaigi. Growth factors: Characteristics and applications. Pharm. Tech. 14:26–36 (1990).

    Google Scholar 

  4. G. R. Lenz and P.-E. Mansson. Growth factors as pharmaceuticals. Pharm. Tech. 15:34–40 (1991).

    Google Scholar 

  5. J. Van Brunt and A. Klausner. Growth factors speed wound healing. Biotechnology 6:25–30 (1988).

    Google Scholar 

  6. G. A. Ksander. Exogenous growth factors in dermal wound healing. Annu. Rep. Med. Chem. 24:223–232 (1989).

    Google Scholar 

  7. K. Okumura, Y. Kiyohara, F. Komada, S. Iwakawa, M. Hirai, and T. Fuwa. Improvement in wound healing by epidermal growth factor (EGF) ointment. I. Effect of nafamostat, gabexate, or gelatin on stabilization and efficacy of EGF. Pharm. Res. 7:1289–1293 (1990).

    Google Scholar 

  8. R. Tsuboi and D. B. Rifkin. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J. Exp. Med. 172:245–251 (1990).

    Google Scholar 

  9. P. A. Hebda, C. K. Klingbeil, J. A. Abraham, and J. C. Fiddes. Basic fibroblast growth factor stimulation of epidermal wound healing in pigs. J. Invest. Dermatol. 95:626–631 (1990).

    Google Scholar 

  10. C. K. Klingbeil, L. B. Cesar, and J. C. Fiddes. Basic fibroblast growth factor accelerates tissue repair in models of impaired wound healing. Progress in Clinical and Biological Research, Vol. 365. Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds, Third International Symposium on Tissue Repair, Miami, Florida, USA, January 10–14, 1990, Wiley-Liss, New York, 1990.

    Google Scholar 

  11. C. K. Klingbeil, S. Nagarajan, and S. A. Pletcher. Full thickness wound repair following single multiple and delayed administration of bFGF. J. Cell. Biochem. Suppl. 0 (15 part f) (1991).

  12. K. N. Broadley, A. M. Aquino, B. Hicks, J. A. Ditesheim, G. S. McGee, A. A. Demetriou, S. C. Woodward, and J. M. Davidson. Growth factors bFGF and TGFβ accelerate the rate of wound repair in normal and in diabetic rats. Int. J. Tissue React. X (6):345–353 (1988).

    Google Scholar 

  13. D. G. Greenhalgh, K. H. Sprugel, M. J. Murray, and R. Ross. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am. J. Pathol. 136:1235–1246 (1990).

    Google Scholar 

  14. A. J. Ammann, L. S. Beck, L. DeGuzman, S. E. Hirabayashi, W. Pun Lee, and L. McFatridge. Transforming growth factor-beta. Effect on soft tissue repair. Ann. N.Y. Acad. Sci. 593:124–134 (1990).

    Google Scholar 

  15. G. A. Ksander, G. H. Chu, H. McMullin, Y. Ogawa, B. M. Pratt, J. S. Rosenblatt, and J. M. McPherson. Transforming growth factors-β1 and β2 enhance connective tissue formation in animal models of dermal wound healing by secondary intent. Ann. N.Y. Acad. Sci. 593:135–147 (1990).

    Google Scholar 

  16. T. N. Mellin, R. J. Mennie, D. E. Cashen, J. J. Ronan, J. Capparella, M. L. James, J. DiSalvo, J. Frank, D. Linemeyer, G. Gimenez-Gallego, and K. A. Thomas. Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors 7:1–14 (1992).

    Google Scholar 

  17. L. Marzella, S. Sengottuvelu, P. N. Manson, and R. A. M. Myers. Mechanism of impaired cutaneous wound healing in obese diabetic (db/db) mice. Wounds Compend. Clin. Res. Pract. 2:135–147 (1990).

    Google Scholar 

  18. P. K. Tsai, D. Volkin, J. M. Dabora, K. C. Thompson, M. W. Bruner, J. O. Gress, B. Matuszewska, M. Keogan, J. V. Bondi, and C. R. Middaugh. Formulation design of acidic fibroblast growth factor. Pharm. Res. 10:649–659 (1993).

    Google Scholar 

  19. D. L. Linemeyer, J. G. Menke, L. J. Kelly, J. DiSalvo, D. Soderman, M. T. Schaeffer, S. Ortega, G. Gimenez-Gallego, and K. A. Thomas. Disulfide bonds are neither required, present nor compatible with full activity of human recombinant acidic fibroblast growth factor. Growth Factors 3:287–298 (1990).

    Google Scholar 

  20. S. Ortega, M. T. Schaeffer, D. Soderman, J. DiSalvo, D. L. Linemeyer, G. Gimenez-Gallego, and K. A. Thomas. Conversion of cysteine to serine residues alters the activity, stability, and heparin dependence of acidic fibroblast growth factor. J. Biol. Chem. 266:5842–5846 (1991).

    Google Scholar 

  21. S. Yamazaki, F. Leu, A. Lee, E. Scattergood, K. Thompson, R. Middaugh, R. Sitrin, and M. King. A novel technique for controlled folding of recombinant aFGF using cross-flow dialysis. FASEB J. 5:1186 (1991).

    Google Scholar 

  22. S. Yamazaki and P. Dephillips. European Patent Application No. 90201870.4 (1990).

  23. R. A. Copeland, H. Ji, A. J. Halfpenny, R. W. Williams, K. C. Thompson, W. K. Herber, K. A. Thomas, M. W. Bruner, J. A. Ryan, D. Marquis-Omer, G. Sanyal, R. D. Sitrin, S. Yamazaki, and C. R. Middaugh. The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch. Biochem. Biophys. 289:53–61 (1991).

    Google Scholar 

  24. J. V. Bondi and L. A. Grabowski. Diffusion measuring device. U.S. Patent 4 594 884 (1968).

  25. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350–356 (1956).

    Google Scholar 

  26. J. Alroy, V. Goyal, and E. Skutelsky. Lectin histochemistry of mammalian endothelium. Histochemistry 86:603–607 (1987).

    Google Scholar 

  27. E. T. Lee. Statistical Methods for Survival Analysis, Lifetime Learning, Belmont, CA, (1980), p. 129.

    Google Scholar 

  28. S. N. Mueller, K. A. Thomas, J. DiSalvo, and E. M. Levine. Stabilization by heparin of acidic fibroblast growth factor mitogenicity for human endothelial cells in vitro. J. Cell. Physiol. 140:439–448 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matuszewska, B., Keogan, M., Fisher, D.M. et al. Acidic Fibroblast Growth Factor: Evaluation of Topical Formulations in a Diabetic Mouse Wound Healing Model. Pharm Res 11, 65–71 (1994). https://doi.org/10.1023/A:1018993610801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018993610801

Navigation