Skip to main content
Log in

Degradation Pathways for Recombinant Human Macrophage Colony-Stimulating Factor in Aqueous Solution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Recombinant human macrophage colony-stimulating factor (rhM-CSF) promotes macrophage proliferation and activity. rhM-CSF clinical trials are currently in progress and require a stable, pharmaceutically acceptable dosage form. This report documents pH effects on rhM-CSF degradation profiles in aqueous solution, with an emphasis on identifying degradation products. Thus, highly purified rhM-CSF was maintained at 30 to 50°C in solutions adjusted to pH 2 to 10. Stressed samples were analyzed by SDS-PAGE, reverse-phase HPLC, size exclusion HPLC, scanning microcalorimetry, and murine bone marrow activity. The results show maximal protein stability in the region pH 7 to 8. Degradation product chromatographic and electrophoretic analyses show distinctly different degradation product profiles in acidic versus alkaline solution. For samples stressed in acidic solution, degradation products were isolated chromatographically and electrophoretically. These degradation products were characterized by N-terminal amino acid sequencing, fast-atom bombardment mass spectrometry, and peptide mapping. The results show that the major degradation pathway in acidic solution involves peptide cleavage at two sites: aspartate169-proline170 and aspartate213-proline214. A third potential cleavage site (aspartate45-proline46) remains intact under conditions that cleave Asp169-Pro170 and Asp213-Pro214. In alkaline solution, degradation proceeds via parallel cleavage and intramolecular cross-linking reactions. A β-elimination mechanism is proposed to account for the degradation in alkaline solution. Consistent with literature observations, the rhM-CSF N-terminal cleavage products retain biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Ralph, M. B. Ladner, A. M. Wang, E. S. Kawasaki, L. M. McConlogue, J. F. Weaver, S. A. Weiss, P. Shadle, K. Koths, and M. K. Warren. The molecular and biological properties of the human and murine members of the CSF-1 family. In D. Webb, C. Pierce, and C. Cohen, Molecular Basis of Lymphokine Action, Humana Press, New York, 1987, pp. 295–311.

    Google Scholar 

  2. D. Metcalf. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257–267 (1986).

    Google Scholar 

  3. S. C. Clark and R. Kamen. The human hematopoietic colony-stimulating factors. Science 236:1229–1236 (1987).

    Google Scholar 

  4. P. Ralph, M.-T. Lee, and I. Nakoinz. rhM-CSF: Molecular cloning, structure in vitro, and in vivo functions. In C. Sorg (ed.), Macrophage-Derived Cell Regulatory Factors. Cytokines, Vol. 1, Karger Press, Basel, 1989, pp. 1–18.

    Google Scholar 

  5. A. Karbassi, J. M. Becker, J. S. Forster, and R. N. Moore. Enhanced killing of C. albicans by murine macrophages treated with macrophage colony-stimulating factor: Evidence for augmented expression of mannose receptors. J. Immunol. 139:412–417 (1987).

    Google Scholar 

  6. E. J. Wing, A. Waheed, R. K. Shadduck, L. S. Nagle, and K. Stephenson. Effect of colony stimulating factor on murine macrophages. J. Clin. Invest. 69:270–279 (1982).

    Google Scholar 

  7. K. Motoyoshi and F. Takaku. Serum cholesterol-lowering activity of human monocytic colony-stimulating factor. Lancet 2:236–239 (1989).

    Google Scholar 

  8. G. G. Wong, P. A. Temple, A. C. Leary, J. S. Witek-Giannotti, et al. Human CSF-1: Molecular cloning and expression of 4-kb cDNA encoding the human urinary protein. Science 235:1504–1508 (1987).

    Google Scholar 

  9. E. S. Kawasaki, M. B. Lander, A. M. Wang, J. V. Arsdell, M. K. Warren, M. Y. Coyne, V. L. Schweikeart, M.-T. Lee, K. J. Wilson, A. Boosman, E. R. Stanley, R. Ralph, and D. F. Mark. Molecular cloning of a cDNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230:291–296 (1985).

    Google Scholar 

  10. K. Yamanishi, M. Takahashi, T. Nishida, Y. Ohmoto, M. Takano, S. Nakai, and Y. Hirai. Renaturation, purification and characterization of human truncated macrophage colony-stimulating factor expressed in E. coli. J. Biochem. 109:404–409 (1991).

    Google Scholar 

  11. R. Halenbeck, E. Kawasaki, J. Wrin, and K. Koths. Renaturation and purification of biologically active recombinant human macrophage colony-stimulating factor expressed in E. coli. Biotechnology 7:710–715 (1989).

    Google Scholar 

  12. S. Suzu, N. Yanai, Y. Sato-Somoto, M. Yamada, T. Kawashima, T. Hanamura, N. Nagat, F. Takaku, and K. Motoyoshi. Characterization of macrophage colony-stimulating factor in body fluids by immunoblot analysis. Blood 77:2160–2165 (1991).

    Google Scholar 

  13. S. K. Das and E. R. Stanley. Structure-function studies of a colony-stimulating factor (CSF-1). J. Biol. Chem. 257:13679–13684 (1982).

    Google Scholar 

  14. R. I. Garnick, N. J. Solli, and P. A. Papa. The role of quality control in biotechnology: An analytical perspective. Anal. Chem. 60:2546–2557 (1988).

    Google Scholar 

  15. J. Geigert. Overview of the stability and handling of recombinant protein drugs. J. Parent. Sci. Technol. 43:220–224 (1989).

    Google Scholar 

  16. R. Sherwood. Therapeutic proteins: the need for analysis. TIBTECH 6:135–136 (1988).

    Google Scholar 

  17. M. J. Pikal, K. M. Dellerman, M. L. Roy, and R. M. Riggin. The effects of formulation variables on the stability of freezedried human growth hormone. Pharm. Res. 8:427–436 (1991).

    Google Scholar 

  18. W. Jiskoot, E. C. Beuvery, A. A. M. de Koning, J. N. Herron, and D. J. A. Crommelin. Analytical approaches to the study of monoclonal antibody stability. Pharm. Res. 7:1234–1241 (1990).

    Google Scholar 

  19. G. C. Visor, V. M. Knepp, K. P. Tsai, M. D. Miller, J. Duffey, T. Calderwood, D. Lokensgard, J. Killian, T. Malefyt, L. Gu, and I. Massey. Development and characterization of a lyophilized dosage form of IL-1β. Lym. Res. 9:425–434 (1990).

    Google Scholar 

  20. P. Labrude and C. Vigneron. Stability and functional properties of haemoglobin freeze-dried in the presence of four protective substances after prolonged storage: Dose-effect relationships. J. Pharm. Pharmacol. 35:23–27 (1982).

    Google Scholar 

  21. J. Geigert, B. M. Panschar, S. Fong, H. N. Huston, D. E. Wong, D. Y. Wong, C. Tanford, and M. Pemberton. The long-term stability of recombinant (serine-17) human interferon-β. J. Inter. Res. 8:539–547 (1988).

    Google Scholar 

  22. J. Geigert, B. M. Panschar, C. Taforo, J. Paola, S. Fong, H. N. Huston, D. E. Wong, and D. Y. Wong. Parameters for the evaluation of long-term stability of tumour necrosis factor preparations. Dev. Biol. Stand. 69:129–138 (1988).

    Google Scholar 

  23. E. Watson and W. C. Kenney. High-performance size-exclusion chromatography of recombinant derived proteins and aggregated species. J. Chromatogr. 436:289–298 (1988).

    Google Scholar 

  24. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–917 (1989).

    Google Scholar 

  25. V. V. Mozhaev, I. V. Berezin, and K. Martinek. Structure-stability relationship in proteins. CRC Crit. Rev. Biochem. 23:235–282 (1988).

    Google Scholar 

  26. R. M. Hewick, M. W. Hunkapillar, L. E. Hood, and W. J. Dreyer. A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256:7990–7997 (1981).

    Google Scholar 

  27. P. Tempst and L. R. Riviere. Examination of automated polypeptide sequencing using standard phenyl isothiocyanate reagent and sub-picomole high-performance liquid chromatographic analysis. Anal. Biochem. 183:290–300 (1989).

    Google Scholar 

  28. J. F. Brandts. In S. N. Timasheff and G. D. Fasman (eds.), Structure and Stability of Biological Macromolecules, Dekker, New York, 1969, p. 213.

    Google Scholar 

  29. P. L. Privalov. Stability of proteins. Adv. Prot. Chem. 33:167–241 (1982).

    Google Scholar 

  30. R. L. Biltonen and N. Langerman. Microcalorimeters for biological chemistry: Applications, instrumentation and experimental design. Methods Enzymol. 61:261–286 (1979).

    Google Scholar 

  31. M. Landon. Cleavage at aspartyl-proline bonds. Methods Enzymol. 47:145–157 (1977).

    Google Scholar 

  32. D. Piszkiewicz, M. Landon, and E. L. Smith. Anomolous cleavage of aspartyl-proline peptide bonds during amino acid sequence determination. Biochem. Biophys. Res. Comm. 40:1173–1178 (1970).

    Google Scholar 

  33. A. S. Ingliss. Cleavage at aspartic acid. Methods Enzymol. 91:324–332 (1983).

    Google Scholar 

  34. K. Patel and R. T. Borchardt. Chemical pathways of peptide degradation. II. Pharm. Res. 7:703–711 (1990).

    Google Scholar 

  35. J. Q. Oeswein and S. J. Shire. Physical biochemistry of protein drugs. In V. H. L. Lee (ed.), Peptide and Protein Drug Delivery, Marcel Dekker, New York, 1991, pp. 167–202.

    Google Scholar 

  36. A. S. Nashef, D. T. Osuga, H. S. Lee, A. I. Ahmed, J. R. Whitaker, and R. E. Feeney. Effects of alkali on proteins. disulfides and their products. J. Agr. Food Chem. 25:245–251 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrier, J.A., Kenley, R.A., Williams, R. et al. Degradation Pathways for Recombinant Human Macrophage Colony-Stimulating Factor in Aqueous Solution. Pharm Res 10, 933–944 (1993). https://doi.org/10.1023/A:1018990001310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018990001310

Navigation