Skip to main content
Log in

Transepithelial Transport and Metabolism of Thyrotropin-Releasing Hormone (TRH) in Monolayers of a Human Intestinal Cell Line (Caco-2): Evidence for an Active Transport Component?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Cell culture models for gastrointestinal transport and metabolism are important mechanistic tools. Our studies of Caco-2 monolayers demonstrate heterogeneity in transport characteristics depending on passage number and origin of the cells. In accordance with data obtained in animals and humans, TRH shows a carrier-mediated, saturable transport component, which operates parallel to a passive pathway in Caco-2 cells at passage number 89-99. At low TRH concentrations (<3 mM) active transport becomes prominent, as demonstrated by the temperature dependence of TRH transport and inhibition experiments. The Michaelis-Menten parameters of the active, saturable transport component are: Km = 1.59 mM and Vmax = 1.84 µM/min. The pH optimum was determined to be at pH 6.0. On the other hand an exclusively paracellular passive route was found with Caco-2 cells at passage number 30-34. These results are also in agreement with observations made by others in cell culture experiments. The aspect of rigorously characterizing the specific Caco-2 clone under investigation is emphasized, especially when active transport mechanisms are suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. L. Smith, D. A. Wall, C. H. Gochoco and G. Wilson. (D) Routes of delivery: Case studies. (5) Oral absorption of peptides and proteins. Adv. Drug Delivery Rev. 8:253–290 (1992).

    Google Scholar 

  2. S. Yokohama, K. Yamashita, H. Toguchi, J. Takeuchi and N. Kitamori. Absorption of thyrotropin-releasing hormone after oral administration of TRH tartrate monohydrate in the rat, dog and human. J. Pharmacobio-Dyn. 7:101–111 (1984).

    Google Scholar 

  3. L. Duntas, F. S. Keck, U. Loos and E. F. Pfeiffer. Pharmakokinetik und Pharmakodynamik von Protirelin (TRH) beim Menschen. Dtsch. Med. Wschr. 113:1354–1357 (1988).

    Google Scholar 

  4. H. Bundgaard. (C) Means to enhance penetration. (1) Prodrugs as a mean to improve the delivery of peptide drugs. Adv. Drug Delivery Rev. 8:1–38 (1992).

    Google Scholar 

  5. S. Lundin, J. Moss, H. Bundgaard and P. Artursson. Absorption of thyrotropin-releasing hormone (TRH) and a TRH prodrug in a human intestinal cell line (Caco-2). Int. J. Pharm. 76:R1–R4 (1991).

    Google Scholar 

  6. D. T. Thwaites, B. H. Hirst and N. L. Simmons. Passive transepithelial absorption of thyrotropin-releasing hormone (TRH) via a paracellular route in cultured intestinal and renal epithelial cell lines. Pharm. Res. 10:674–681 (1993).

    Google Scholar 

  7. A. H. Dantzig and L. Bergin. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta 1027:211–217 (1990).

    Google Scholar 

  8. K. I. Inui, M. Yamamoto and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line. Caco-2: Specific transport systems in apical and basolateral membranes. J. Pharm. Exp. Ther. 261:195–201 (1992).

    Google Scholar 

  9. J. Moss, A. Buur and H. Bundgaard. Prodrugs of peptides. 8. In vitro study of intestinal metabolism and penetration of thyrotropin-releasing hormone (TRH) and its prodrugs. Int. J. Pharm. 66:183–191 (1990).

    Google Scholar 

  10. A. R. Hilgers, R. A. Conradi and P. S. Burton. Caco-2 cell monolayer as a model for drug transport across the intestinal mucosa. Pharm. Res. 9:902–910 (1990).

    Google Scholar 

  11. J. Moss and H. Bundgaard. Kinetics and pattern of degradation of thyrotropin-releasing hormone (TRH) in human plasma. Pharm. Res. 7:751–755 (1990).

    Google Scholar 

  12. R. Walter and T. Yoshimoto. Postproline cleaving enzyme: kinetic studies of size and stereospecificty of its active site. Biochemistry 17:4139–4144 (1978).

    Google Scholar 

  13. S. Wilk. Minireview prolyl endopeptidase. Life Sci 33:2149–57 (1983).

    Google Scholar 

  14. R. Wali, C. Baum, M. Sitrin and T. A. Brasitus. Regulation of protein kinase C, intracellular Ca2+ and Na+/H+ exchange in Caco-2 cells by 1,25(OH)2D3. Gastroenterology 96:A534 (1989).

    Google Scholar 

  15. C. J. Dix, H. Y. Orbay, I. F. Hassan and G. Wilson. Vitamin B12 transport through polarized monolayers of a colon carcinoma cell line. Biochem. Soc. Trans. 15:443–440 (1987).

    Google Scholar 

  16. A. Blais, P. Bissonnette and A. Berteloot. Common characteristics for Na-dependent sugar transport in Caco-2 cells and human fetal colon. J. Membr. Biol. 99:113–125 (1987).

    Google Scholar 

  17. M. Hu and R. T. Borchardt. Mechanism of L-methyldopa transport through a monolayer of polarized human epithelial cells (Caco-2). Pharm. Res. 7:1313–1319 (1990).

    Google Scholar 

  18. S. Yokohama, T. Yoshioka, K. Yamashita and N. Kitamori. Intestinal absorption mechanism of thyrotropin-releasing hormone. J. Pharmacobio-Dyn. 7:445–451 (1984).

    Google Scholar 

  19. M. Hu and R. T. Borchardt. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): Uptake and efflux of phenylalanine. Biochim. Biphys. Acta 1135:233–244 (1992).

    Google Scholar 

  20. M. Das and A. N. Radhakrishan. Studies on a wide-spectrum intestinal dipeptide uptake system in the monkeys and in the human. Biochem. J. 146:133–139 (1975).

    Google Scholar 

  21. V. Ganapathy and F. H. Leibach. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J. Biochem. Chem. 258:14189–14192 (1983).

    Google Scholar 

  22. D. I. Friedman and G. L. Amidon. Characterization of the intestinal transport parameters for small peptide drugs. J. Contr. Rel. 13:141–146 (1990).

    Google Scholar 

  23. M. Muranushi, T. Yoshikawa, M. Yoshida, T. Oguma, K. Hirano and H. Yamada. Transport characteristics of cefibuten, a new oral cephem, in rat intestinal brush-border membrane vesicles: Relationship to oligopeptide and amino β-lactam transport. Pharm. Res. 6:308–312 (1989).

    Google Scholar 

  24. S. A. Adibi and M. R. Soleimanpour. Functional characterization of dipeptide transport system in human jejunum. J. Clin. Invest. 53:1368–1374 (1974).

    Google Scholar 

  25. P. L. Nicklin and W. J. Irwin. Thyrotropin-releasing hormone transport across monolayers of human intestinal absorptive (Caco-2) cells in-vitro. J. Pharm. Pharmacol. 43:103P (1991).

    Google Scholar 

  26. T. Shimada and T. Hoshi, Na+-dependent elevation of the acidic cell surface pH (microclimate pH) of rat jejunal villus cells induced by nucleotides and phorbol ester: possible mediators of the regulation of the Na+/H+ antiporter. Biochim. Biophys. Acta 937:328–334 (1988).

    Google Scholar 

  27. M. L. Lucas, W. Schneider, F. J. Haberich and J. A. Blair. Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc. R. Soc. Lond. B. 192:39–48 (1975).

    Google Scholar 

  28. A. Zweibaum. Differentiation of human colon cancer cells. In G. Wilson, S. S. Davis, L. Illum, A. Zweibaum (eds.), Pharmaceutical applications of cell and tissue culture to drug transport, Plenum Press, New York and London, 1990, pp. 27–38.

    Google Scholar 

  29. S. Woodcock, I. Williamson, I. Hassan and M. Mackay. Isolation and characterization of clones from the Caco-2 cell line displaying increased taurocholic acid transport. J. Cell Sci. 98: 323–332 (1991).

    Google Scholar 

  30. P. Nicklin, B. Irwin, I. Hassan, I. Williamson and M. Mackay. Permeable support types influence the transport of compounds across Caco-2 cells. Int. J. Pharm. 83:197–209 (1992).

    Google Scholar 

  31. T. Sergent-Engelen, C. Halleux, E. Ferrain, H. Hanot, R. Legras and Y. J. Schneider. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephthalate or polycarbonate microporous membranes. Biotechnology Techniques 4:89–94 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, E., Kissel, T. Transepithelial Transport and Metabolism of Thyrotropin-Releasing Hormone (TRH) in Monolayers of a Human Intestinal Cell Line (Caco-2): Evidence for an Active Transport Component?. Pharm Res 11, 1575–1580 (1994). https://doi.org/10.1023/A:1018953603301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018953603301

Navigation