Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone producing organ in the body. Modern biology makes it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed in cells outside the gut, some only in extraintestinal endocrine cells and neurons but others also in other cell types. The extraintestinal cells may synthesize different bioactive fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, neurons, cancer cells, and, for instance, spermatozoa release the peptides differentially (autocrine, endocrine, neurocrine, paracrine, spermiocrine secretion etc.), so the same peptide may act as a blood-borne hormone, a neurotransmitter, a local growth factor, or a fertility factor. The molecular targets of each bioactive peptide are specific G-protein coupled receptors expressed in the cell membranes of different target cells. Also the target cells of gut hormones occur widespread outside the digestive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCK:

Cholecystokinin

CGRP:

Calcitonin gene related peptide

EGF:

Epidermal growth factor

G-cells:

Gastrin-producing cells

GIP:

Gastric inhibitory peptide (later renamed glucose-dependent insulinotropic polypeptide)

GLP-1 and -2:

Glucagon-like peptide 1 and 2

IGF:

Insulin-like growth factor

L-cells:

GLP-producing cells

mRNA:

Messenger ribonucleic acid

NPY:

Neuropeptide Y

PP:

Pancreatic polypeptide

PTHrP:

Parathyroid Hormone-related Protein

PYY:

Peptide YY

TGF-α (alpha) and -β (beta):

Transforming growth factor α (alpha) and -β (beta)

TSH:

Thyroidea-stimulating hormone

VIP:

Vasoactive intestinal polypeptide

References

  1. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28(5):325–353

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Edkins JS (1906) The chemical mechanism of gastric secretion. J Physiol 34(1–2):133–144

    PubMed Central  PubMed  Google Scholar 

  3. Starling EH (1905) The Croonian lecture on the chemical correlation of the function of the body. Lancet II:399–341

    Google Scholar 

  4. Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 86:599–613

    CAS  Google Scholar 

  5. Harper AA, Raper HS (1943) Pancreozymin, a stimulation of the secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 102(1):115–125

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Jorpes JE, Mutt V (1966) Cholecystokinin and pancreozymin, one single hormone? Acta Physiol Scand 66(1):196–202

    Google Scholar 

  7. Rehfeld JF (1998) The new biology of gastrointestinal hormones. Physiol Rev 78(4):1087–1108

    CAS  PubMed  Google Scholar 

  8. Rehfeld JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36(11–12):735–741

    Google Scholar 

  9. Schultz SG, Mackhlouf GM, Rauner BB (eds) (1989) Handbook of physiology. The gastrointestinal system. Neural and endocrine biology. American Physiology Society, Bethesda

    Google Scholar 

  10. Walsh JH, Dockray GJ (eds) (1994) Gut peptides. Raven, New York

    Google Scholar 

  11. Taché Y, Goto Y, Ohning G (eds) (2002) Gut-brain peptides in the new millennium. Cure Foundation, Los Angeles

    Google Scholar 

  12. Rehfeld JF (2012) Beginnings: a reflection on the history of gastrointestinal endocrinology. Regul Pept 177(Suppl):S1–S5

    Article  PubMed  Google Scholar 

  13. Amara SG, Jonas V, Rosenfeld MG, Onges ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298(5871):240–244

    Article  CAS  PubMed  Google Scholar 

  14. Gafvelin G, Jörnvall H, Mutt V (1990) Processing of prosecretin: isolation of a secretin precursor from porcine intestine. Proc Natl Acad Sci U S A 87(17):6781–6785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kopin AS, Wheeler MB, Nishtani J, McBride EW, Chang TM, Chey WY et al (1991) The secretin gene: evolutionary history, alternative splicing and developmental regulation. Proc Natl Acad Sci U S A 88(12):5335–5339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rehfeld JF (2011) Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol (Oxf) 201(4):405–411

    Article  CAS  Google Scholar 

  17. Persson P, Håkanson R, Axelson J, Sundler F (1989) Gastrin releases a blood-calcium lowering peptide from the acid producing part of the stomach. Proc Natl Acad Sci U S A 86(8):2834–2838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kronenberg HM, Lanske B, Kovacs CS, Chung UI, Lee K, Segre GV, Schipani E, Jüppner H (1998) Functional analysis of the PTH/PTHrP network of ligands and receptors. Recent Prog Horm Res 53:283–301

    CAS  PubMed  Google Scholar 

  19. Glover ID, Barlow DJ, Pitts JE, Wood SP, Tickle IJ, Blundell TL et al (1984) Conformational studies on the pancreatic polypeptide hormone family. Eur J Biochem 142(2):379–385

    Article  CAS  PubMed  Google Scholar 

  20. Johnsen AH, Rehfeld JF (1990) Cionin: a di-sulfotyrosyl hybrid of cholecystokinin and gastrin from the protochordate Ciona intestinalis. J Biol Chem 265(6):3054–3058

    CAS  PubMed  Google Scholar 

  21. Anastasi A, Erspamer V, Endean R (1968) Isolation and amino acid sequence of caerulein, the active decapeptide of the skin of hyla caerulea. Arch Biochem Biophys 125(1):57–68

    Google Scholar 

  22. Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271(5248):470–477

    Article  CAS  PubMed  Google Scholar 

  23. Johnsen AH (1998) Phylogeny of the cholecystokinin/gastrin family. Front Neuroendocrinol 19(2):73–99

    Article  CAS  PubMed  Google Scholar 

  24. Rourke IJ, Rehfeld JF, Møller M, Johnsen AH (1997) Characterization of the cholecystokinin and gastrin genes from the bullfrog, Rana catesbeiana: evolutionary conservation of primary and secondary sites of gene expression. Endocrinology 138(4):1719–1727

    Article  CAS  PubMed  Google Scholar 

  25. Holzer P (1994) Calcitonin gene-related peptide. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry and physiology. Raven, New York, pp 493–534

    Google Scholar 

  26. Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312(5996):729–734

    Google Scholar 

  27. Mutt V, Jorpes JE, Magnusson S (1970) Structure of porcine secretin. The amino acid sequence. Eur J Biochem 15(3):513–519

    Article  CAS  PubMed  Google Scholar 

  28. Dockray GJ, Varro A, Dimaline R, Wang T (2001) The gastrins: their production and biological activities. Annu Rev Physiol 63:119–139

    Article  CAS  PubMed  Google Scholar 

  29. Ørskov C, Bersani M, Johnsen AH, Højrup P, Holst JJ (1989) Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 264(22):12826–12829

    PubMed  Google Scholar 

  30. Drucker DJ, Erlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 93(15):7911–7916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Holst JJ, Ørskov C, Nielsen OV, Schwartz TW (1987) Truncated glucagon-like peptide-I, an insulin-releasing hormone from the distal gut. FEBS Lett 211(2):169–174

    Article  CAS  PubMed  Google Scholar 

  32. Bell GI, Santerre RF, Müllenbach GT (1983) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302(5910):716–718

    Article  CAS  PubMed  Google Scholar 

  33. Mojsov S, Weir GC, Habener JF (1987) Insulintropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79(2):616–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rehfeld JF (1990) Posttranslational attenuation of peptide gene expression. FEBS Lett 268(1):1–4

    Article  CAS  PubMed  Google Scholar 

  35. Lüttichau HR, van Solinge WW, Nielsen FC, Rehfeld JF (1993) Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology 104(4):1092–1098

    PubMed  Google Scholar 

  36. Larsson LI, Rehfeld JF, Sundler F, Håkanson R (1976) Pancreatic gastrin in foetal and neonatal rats. Nature 262(5569):609–610

    Article  CAS  PubMed  Google Scholar 

  37. Bardram L, Hilsted L, Rehfeld JF (1990) Progastrin expression in mammalian pancreas. Proc Natl Acad Sci U S A 87(1):298–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rehfeld JF (1978) Localisation of gastrins to neuro- and adenohypophysis. Nature 271(5647):771–773

    Article  CAS  PubMed  Google Scholar 

  39. Larsson LI, Rehfeld JF (1981) Pituitary gastrins occur in corticotrophs and melanotrophs. Science 213(4509):768–770

    Article  CAS  PubMed  Google Scholar 

  40. Rehfeld JF, Hansen HF, Larsson LI, Stengaard-Pedersen K, Thorn NA (1984) Gastrin and cholecystokinin in pituitary neurons. Proc Natl Acad Sci U S A 81(6):1902–1905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Uvnäs-Wallensten K, Rehfeld JF, Larsson LI, Uvnäs B (1977) Heptadecapeptide gastrin in the vagal nerve. Proc Natl Acad Sci U S A 74(12):5707–5710

    Article  PubMed Central  PubMed  Google Scholar 

  42. Schalling M, Persson H, Pelto-Huikko M, Odum L, Ekman P, Gottlieb C et al (1990) Expression and localization of gastrin messenger RNA and peptide in human spermatogenetic cells. J Clin Invest 86(2):660–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bundgaard JR, Vuust J, Rehfeld JF (1995) Tyrosine O-sulfation promotes proteolytic processing of progastrin. EMBO J 14(13):3073–3079

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Larsson LI, Goltermann N, de Magistris L, Rehfeld JF, Schwartz TW (1979) Somatostatin cell processes as pathways for paracrine secretion. Science 205(4413):1393–1395

    Article  CAS  PubMed  Google Scholar 

  45. Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313(6005):745–747

    Google Scholar 

  46. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A et al (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316(6031):823–826

    Google Scholar 

  47. Layton JE, Scanlon DB, Soveny C, Mostyn G (1988) Effects of Bombesin antagonists on the growth of small cell lung cancer cells in vitro. Cancer Res 48(17):4783–4789

    CAS  PubMed  Google Scholar 

  48. Sethi T, Rozengurt E (1992) Gastrin stimulates Ca2 + -mobilization and clonal growth in small cell lung cancer cells. Cancer Res 52(21):6031–6035

    CAS  PubMed  Google Scholar 

  49. Blackmore M, Hirst BH (1992) Autocrine stimulation of growth of AR4-2J rat pancreatic tumour cells by gastrin. Br J Cancer 66(1):32–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Weinstock J, Baldwin GS (1988) Binding of gastrin(17) to human gastric carcinoma cell lines. Cancer Res 48(4):932–937

    CAS  PubMed  Google Scholar 

  51. Hoosein NM, Kiener PA, Curry RC, Brattain MG (1990) Evidence for autocrine growth stimulation of cultured colon tumor cells by gastrin/cholecystokinin-like peptide. Exp Cell Res 186(1):15–21

    Article  CAS  PubMed  Google Scholar 

  52. Heald EB, Kramer ST, Smith JP (1992) Trophic effects of unsulfated cholecystokinin on mouse pancreas and human pancreatic cancer. Pancreas 7(5):530–535

    Article  CAS  PubMed  Google Scholar 

  53. Persson H, Rehfeld JF, Ericsson A, Schalling M, Pelto-Huikko M, Hökfelt T (1989) Transient expression on the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc Natl Acad Sci U S A 86(16):6166–6170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Li M, Mbikay M, Nakayama K, Miyata A, Arimura A (2000) Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann N Y Acad Sci 921:333–339

    Article  CAS  PubMed  Google Scholar 

  55. Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, Tomomoto S et al (2002) Defects in reproductive functions in PACAP-deficient female mice. Regul Pept 109(1–3):45–48

    Article  CAS  PubMed  Google Scholar 

  56. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24(4):389–427

    Article  CAS  PubMed  Google Scholar 

  57. Körner M, Eltschinger V, Waser B, Schönbrunn A, Reubi JC (2005) Value of immunohistochemistry for somatostatin receptor subtype sst2A in cancer tissuer: lessons from the comparison of anti-sst2A antibodies with somatostatin receptor autoradiography. Am J Surg Pathol 29(12):1642–1651

    Article  PubMed  Google Scholar 

  58. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A et al (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20(11):1172–1182

    Article  CAS  PubMed  Google Scholar 

  59. Fischer T, Doll C, Jacobs S, Kolodziej A, Stumm R, Schulz S (2008) Reassessment of sst2 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-1. J Clin Endocrinol Metab 93(11):4519–4524

    Article  CAS  PubMed  Google Scholar 

  60. Körner M, Waser B, Schönbrunn A, Perren A, Reubi JC (2012) Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 36(2):242–252

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lupp A, Hunder A, Petrich A, Nagel F, Doll C, Schulz S (2011) Reassessment of sst(5) somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinology 94(3):255–264

    Article  CAS  PubMed  Google Scholar 

  62. Pyke C, Knudsen LB (2013) The glucagon-like peptide-1 receptor – or not? Endocrinology 154(1):4–8

    Article  CAS  PubMed  Google Scholar 

  63. Michel MC, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 379(4):385–388

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The skillful and patient secretarial assistance of Connie Bundgaard is gratefully acknowledged. The author also wishes to thank Dr. Jean-Claude Reubi (Berne, Switzerland) for helpful discussion and suggestions for the receptor section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens F. Rehfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Rehfeld, J.F. (2014). Gastrointestinal Hormones and Their Targets. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_7

Download citation

Publish with us

Policies and ethics