Skip to main content
Log in

Passive Transepithelial Absorption of Thyrotropin-Releasing Hormone (TRH) via a Paracellular Route in Cultured Intestinal and Renal Epithelial Cell Lines

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Transport studies using intestinal brush-border membrane vesicles isolated from rats and rabbits have failed to demonstrate proton- or Na+-dependent carrier-mediated transport of thyrotropin-releasing hormone (TRH), despite a pharmacologically relevant oral bioavailability. To examine the hypothesis that reported levels of oral bioavailability reflect predominately a paracellular rather than transcellular route for transepithelial transport of TRH, we have studied TRH transport in cultured epithelial cell types of intestinal (Caco-2 and T84) and renal (MDCK I, MDCK II, and LLC-PK1 origin, whose paracellular pathways span the range of permeability values observed in natural epithelia. Transport of TRH across monolayers of intestinal Caco-2 cells was similar to the flux of mannitol (1–4% per 4 hr), and unlike other putative substrates for the di-/tripeptide carrier, apical-to-basolateral transport was not increased by the presence of an acidic pH in the apical chamber. TRH transport did not show saturation, being uneffected in the presence of 20 mM cold TRH. In each cell type studied TRH and mannitol transport were similar and positively correlated with the conductance of the cell layers, consistent with a passive mechanism of absorption. This evidence suggests that, providing that a peptide is resistant to luminal hydrolysis, small but pharmacologically significant amounts of peptide absorption may be achieved by passive absorption across a paracellular route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. J. Ormston. Clinical effects of TRH on TSH release after i.v. and oral administration in normal volunteers and patients with thyroid disease. Front. Hormone Res. 1:45–75 (1972).

    Google Scholar 

  2. E. D. Haigler, J. M. Hershman, and J. A. Pittman. Response to orally administered synthetic thyrotropin-releasing hormone in man. J. Clin. Endocrinol. Metab. 35(4):631–635 (1972).

    Google Scholar 

  3. S. Yokohama, T. Yoshioka, K. Yamashita, and N. Kitamori. Intestinal absorption mechanisms of thyrotropin-releasing hormone. J. Pharm. Dyn. 7:445–451 (1984).

    Google Scholar 

  4. D. T. Thwaites, N. L. Simmons, and B. H. Hirst. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: Comparison with proton-coupled dipeptide and Na+-coupled glucose transport. Pharm. Res. 10:667–673 (1993).

    Google Scholar 

  5. K. Dharmsathaphorn, K. G. Mandel, H. Masui, and J. A. McRoberts. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. J. Clin. Invest. 75:462–471 (1985).

    Google Scholar 

  6. J. L. Madara, J. Stafford, D. Barenberg, and S. Carlson. Functional coupling of tight junctions and microfilaments in T84 monolayers. Am. J. Physiol. 254:G416–G423 (1988).

    Google Scholar 

  7. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterisation of the human colonic carcinoma cell-line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  8. G. Barker and N. L. Simmons. Identification of two strains of cultured canine renal epithelial cells (MDCK cells) which display entirely different physiological properties. Q. J. Exp. Physiol. 66:61–72 (1981).

    Google Scholar 

  9. D. S. Misfeldt and M. J. Sanders. Transepithelial transport in cell culture: D-Glucose transport by a pig kidney cell-line (LLCPK1). J. Membr. Biol. 59:13–18 (1981).

    Google Scholar 

  10. A. H. Dantzig and L. Bergin. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta 1027:211–217 (1990).

    Google Scholar 

  11. K. Inui, M. Yamamoto, and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: Specific transport systems in apical and basolateral membranes. J. Pharmacol. Exp. Ther. 261(1):195–201 (1992).

    Google Scholar 

  12. N. L. Simmons. Tissue culture of established renal cell-lines. Meth. Enzymol. 191:426–436 (1990).

    Google Scholar 

  13. P. Nicklin, B. Irwin, I. Hassan, I. Williamson, and M. Mackay. Permeable support type influences the transport of compounds across Caco-2 cells. Int. J. Pharm. 83:197–209 (1992).

    Google Scholar 

  14. E. Frömter and J. Diamond. Route of passive ion permeation in epithelia. Nature New Biol. 235:9–10 (1972).

    Google Scholar 

  15. D. W. Powell. Barrier function of epithelia. Am. J. Physiol. 241:G275–G288 (1981).

    Google Scholar 

  16. E. Schaerer, M. R. Neutra, and J.-P. Kraehenbuhl. Molecular and cellular mechanisms involved in transepithelial transport. J. Membr. Biol. 123:93–103 (1991).

    Google Scholar 

  17. J. M. Addison, D. Burston, and D. M. Matthews. Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin. Sci. 43:907–911 (1972).

    Google Scholar 

  18. D. M. Matthews and S. A. Adibi. Progress in gastroenterology: Peptide absorption. Gastroenterology 71:151–161 (1976).

    Google Scholar 

  19. S. Lundin, J. Moss, H. Bundgaard, and P. Artursson. Absorption of thyrotropin-releasing hormone (TRH) and a TRH prodrug in a human intestinal cell line (Caco-2). Int. J. Pharm. 76:R1–R4 (1991).

    Google Scholar 

  20. P. L. Nicklin and W. J. Irwin. Thyrotropin-releasing hormone transport across monolayers of human intestinal absorptive (Caco-2) cells in vitro. J. Pharm. Pharmacol. 43:103P (1991).

    Google Scholar 

  21. C. H. Von Bonsdorff, S. D. Fuller, and K. Simons. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J. 4:2781–2792 (1985).

    Google Scholar 

  22. J. Hastewell, S. Lynch, I. Williamson, R. Fox, and M. Mackay. Absorption of human calcitonin across the rat colon in vivo. Clin. Sci. 82:589–594 (1992).

    Google Scholar 

  23. R. J. Naftalin and S. Tripathi. Passive water flows driven across the isolated rabbit ileum by osmotic, hydrostatic and electrical gradients. J. Physiol. 360:27–50 (1985).

    Google Scholar 

  24. R. A. Frizzell and S. G. Schultz. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59:318–346 (1972).

    Google Scholar 

  25. C. Rose and S. G. Schultz. Electrical potential profile across rabbit ileum. J. Gen. Physiol. 57:641–662 (1971).

    Google Scholar 

  26. N. L. Simmons and R. J. Naftalin. Bidirectional sodium ion movements via the paracellular and transcellular routes across short-circuited rabbit ileum. Biochim. Biophys. Acta 448:426–450 (1976).

    Google Scholar 

  27. J. H. Moreno. Blockade of cation permeability across tight junctions of gall-bladder and other leaky epithelia. Nature 251:150–151 (1974).

    Google Scholar 

  28. J. L. Madara. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: Physiological rearrangement of tight junctions. J. Membr. Biol. 116:177–184 (1990).

    Google Scholar 

  29. E. C. Griffiths, J. A. Kelly, A. Ashcroft, D. J. Ward, and B. Robson. Comparative metabolism and conformation of TRH and its analogues. In G. Metcalf and I. M. D. Jackson (eds.), Thyrotropin-releasing hormone: Biomedical significance. Ann. N.Y. Acad. Sci. USA 553:217–231 (1989).

  30. Y. Fuse, D. H. Polk, R. W. Lam, A. L. Reviczky, and D. A. Fisher. Distribution and ontogeny of thyrotropin-releasing hormone degrading enzymes in rats. Am. J. Physiol. 259:E787–E791 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thwaites, D.T., Hirst, B.H. & Simmons, N.L. Passive Transepithelial Absorption of Thyrotropin-Releasing Hormone (TRH) via a Paracellular Route in Cultured Intestinal and Renal Epithelial Cell Lines. Pharm Res 10, 674–681 (1993). https://doi.org/10.1023/A:1018947430018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018947430018

Navigation