Skip to main content
Log in

Effects of Configuration Around the Chiral Carbon Atoms on the Crystal Properties of Ephedrinium and Pseudoephedrinium Salicylates

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The physicochemical properties and crystal structures of the crystalline salts formed by the interaction of an achiral anion, salicylate, with homochiral and racemic ephedrinium and pseudoephedrinium cations were determined. The interaction of ephedrinium or pseudoephedrinium with salicylate in aqueous solution yielded crystalline salts with the notable exception of homochiral ephedrinium. Evaporation of the solvent from solutions of homochiral ephedrine and salicyclic acid in various organic solvents, as well as grinding together solid homochiral ephedrine and solid salicylic acid, yielded viscous semisolids suggesting that homochiral ephedrinium salicylate has a low melting point and/or a high aqueous solubility. Mixing of the two viscous solids, obtained by grinding each of the opposite enantiomers of ephedrine with equimolar salicylic acid, resulted in the formation of racemic ephedrine and subsequently, upon heating, in the formation of racemic ephedrinium salicylate. While racemic ephedrinium salicylate exists as a crystalline compound (P21/n space group) with an equal number of opposite enantiomers in the unit cell, its diastereomer, racemic pseudoephedrinium salicylate, exists as a conglomerate, i.e. a physical mixture, of the homochiral crystals of the opposite enantiomers (each P21 space group). The inability of homochiral ephedrinium to exist as a crystalline salicylate salt at 20–25°C is attributed to its high energy conformation and/or to the poor packing of homochiral ephedrinium salicylate molecules in the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. N. Berge, L. D. Bighley and D. C. Monkhouse. Pharmaceutical salts. J. Pharm. Sci. 66:1–19 (1977).

    Google Scholar 

  2. P. L. Gould. Salt selection for basic drugs. Int. J. Pharm. 33:201–217 (1986).

    Google Scholar 

  3. O. Wallach. Über gebromte Derivate der Carvonreihe. Liebigs Ann. Chem. 286:140 (1895).

    Google Scholar 

  4. C. Pratt-Brock, W. B. Schweizer and J. D. Dunitz. On the validity of Wallach's rule: On the density and stability of racemic crystals compared with their chiral counterparts. J. Am. Chem. Soc. 113:9811–9820 (1991).

    Google Scholar 

  5. J. Jacques, M. Leclerecq and M. J. Brienne. La formation de sels augmente-t-elle la fréquence des dédoublements spontanés? Tetrahedron 37:1727–1733 (1981).

    Google Scholar 

  6. J. Jacques, A. Collet, A. and S. H. Wilen. Enantiomers, Racemates and Resolutions, John Wiley & Sons: New York, 1981, pp 32–33, 81, 217–239, 423–435.

    Google Scholar 

  7. H. G. Brittain. Crystallographic consequences of molecular dissymmetry. Pharm. Res. 7:683–689 (1990).

    Google Scholar 

  8. S. P. Duddu. Implications of Chirality of Drugs and Excipients in Physical Pharmacy, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1993, pp 67–104.

  9. D. T. Cromer, J. T. Waber. International Tables for X-ray Crystallography, vol. IV, Kynoch, Birmingham, England, 1974, Table 2.2 A.

    Google Scholar 

  10. J. A. Ibers and W. C. Hamilton. Dispersion corrections and crystal structure refinements. Acta Crystallogra. 17:781–782 (1964).

    Google Scholar 

  11. D. T. Cromer. International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, England, 1974, Table 2.3.1.

    Google Scholar 

  12. A. I. Kitaigorodskii. Molecular Crystals and Molecules, Academic Press: New York, 1973.

    Google Scholar 

  13. S. P. Duddu and D. J. W. Grant. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution or vapor state. Pharm. Res. 9:1083–1091 (1992).

    Google Scholar 

  14. R. Bergin. Refinement of structure of (−)-ephedrine hydrochloride. Acta Cryst. B27:381–386 (1971).

    Google Scholar 

  15. A. Gorman, O. R. Gould, A. M. Gray, P. Taylor and M. D. Walkinshaw. Asymmetric resolution and molecular recognition. Part 2. The crystal structures of ephedrine-N-benzyloxy-carbonyl-L-leucine and ephedrine-N-acetyl-L-valine. Chem. Soc. Perkin. Trans. II:739–746 (1986).

    Google Scholar 

  16. H.-J. Gais and K. L. Lukas. Enantioselective and enantioconvergent syntheses of building blocks of cyclopentanoid natural products. Angew. Chem., Int. Ed. Engl. 23:142–143 (1984).

    Google Scholar 

  17. M. Mathew and G. J. Palenik. The crystal and molecular structures of (+)-pseudoephedrine and (+)-pseudoephedrine hydrochloride. Acta Cryst. B33:1016–1022 (1977).

    Google Scholar 

  18. R. A. Hearn and C. E. Bugg. The crystal structure of (−)-ephedrine dihydrogen phosphate. Acta Cryst. B28:3662–3667 (1972).

    Google Scholar 

  19. R. A. Hearn, G. R. Freeman and C. E. Bugg. Conformational and phosphate binding properties of phenylethanolamines. Crystal structure of ephedrine monohydrogen phosphate monohydrate. J. Am. Chem. Soc. 95:7150–7154 (1973).

    Google Scholar 

  20. L. B. Kier. The preferred conformations of ephedrine isomers and the nature of the alpha adrenergic receptor. J. Pharmacol. Exp. Ther. 164:75–81 (1968).

    Google Scholar 

  21. P. S. Portoghese. Stereochemical studies on medicinal agents. IV. Conformational analysis of ephedrine isomers and related compounds. J Med. Chem.. 10:1057–1063 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duddu, S.P., Grant, D.J.W. Effects of Configuration Around the Chiral Carbon Atoms on the Crystal Properties of Ephedrinium and Pseudoephedrinium Salicylates. Pharm Res 11, 1549–1556 (1994). https://doi.org/10.1023/A:1018945401484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018945401484

Navigation