Skip to main content
Log in

PAMAM Dendrimers as Delivery Agents for Antisense Oligonucleotides

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the potential use of PAMAM dendrimers for the delivery of antisense oligonucleotides into cells under conditions that mimic the in vivo environment.

Methods. We used HeLa cells stably transfected with plasmid pLuc/ 705 which has a luciferase gene interrupted by a human β-globin intron mutated at nucleotide 705, thus causing incorrect splicing. An antisense oligonucleotide overlapping the 705 splice site, when delivered effectively, corrects splicing and allows luciferase expression. The ability of dendrimers to deliver oligonucleotides to HeLa Luc/705 cells was evaluated in the absence or presence of serum.

Results. PAMAM dendrimers formed stable complexes with oligonucleotides that had modest cytotoxicity and showed substantial delivery activity. The dose of the oligonucleotide, the charge ratio of oligonucleotide to dendrimer, and the size (generation) of the dendrimers were all critical variables for the antisense effect. The physical properties of dendrimer/oligonucleotide complexes were further investigated using sedimentation and gel electrophoresis methods. Effective oligonucleo-tide/generation 5 dendrimer complexes were macromolecular rather than particulate in nature, and were not sedimented at 100,000 RPM. Compared to other types of delivery agents, PAMAM dendrimers were more effective in delivering oligonucleotides into the nucleus of cells in the presence of serum proteins.

Conclusions. Our results suggest that PAMAM dendrimers form non-particulate delivery complexes that function in the presence of serum proteins and thus may be suited for in vivo therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Juliano, S. Alahari, H. Yoo, R. Kole, and M. Cho. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16:494-502 (1999).

    Google Scholar 

  2. S. K. Alahari, R. DeLong, M. H. Fisher, N. M. Dean, P. Viliet, and R. L. Juliano. Novel chemically modified oligonucleotides provide potent inhibition of P-glycoprotein expression. J. Pharmacol. Exp. Ther. 286:419-428 (1998).

    Google Scholar 

  3. C. F. Bennett, M. Y. Chiang, H. Chan, J. E. Shoemaker, and C. K. Mirabelli. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41:1023-1033 (1992).

    Google Scholar 

  4. L. Chaloin, P. Vidal, P. Lory, J. Mery, N. Lautredou, G. Divita, and F. Heitz. Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem. Biophys. Res. Commun. 243:601-608 (1998).

    Google Scholar 

  5. S. B. Rajur, C. M. Roth, J. R. Morgan, and M. L. Yarmush. Covalent protein-oligonucleotide conjugates for efficient delivery of antisense molecules. Bioconjug. Chem. 8:935-940 (1997).

    Google Scholar 

  6. G. Degols, J. P. Leonetti, and B. Lebleu. Sequence-specific activity of antisense oligonucleotides conjugated to poly (L-lysine)carriers. Ann. NY Acad. Sci. 660:331-333 (1992).

    Google Scholar 

  7. J. A. Hughes, A. I. Aronsohn, A. V. Avrutskaya, and R. L. Juliano. Evaluation of adjuvants that enhance the effectiveness of antisense oligodeoxynucleotides. Pharm. Res. 13:404-410 (1996).

    Google Scholar 

  8. E. Liang and J. Hughes. Characterization of a pH-sensitive surfactant, dodecyl-2-(1′-imidazolyl) propionate (DIP), and preliminary studies in liposome mediated gene transfer. Biochim. Biophys. Acta 1369:39-50 (1998).

    Google Scholar 

  9. X. Gao and L. Huang. Cationic liposome-mediated gene transfer. Gene Ther 2:710-722 (1995).

    Google Scholar 

  10. M. C. De Oliveira, E. Fattal, P. Couvreur, P. Lesieur, C. Bourgaux, M. Ollivon, and C. Dubernet. pH-sensitive liposomes as a carrier for oligonucleotides: a physico-chemical study of the interaction between DOPE and a 15-mer oligonucleotide in quasi-anhydrous samples. Biochim. Biophys. Acta 1372:301-310 (1998).

    Google Scholar 

  11. A. Tari, M. Khodadadian, D. Ellerson, A. Deisseroth, and G. Lopez-Berestein. Liposomal delivery of oligodeoxynucleotides. Leuk. Lymphoma 21:93-97 (1996).

    Google Scholar 

  12. P. L. Feigner, Y. J. Tsai, L. Sukhu, C. J. Wheeler, M. Manthorpe, J. Marshall, and S. H. Cheng. Improved cationic lipid formulations for in vivo gene therapy. Ann. NY Acad. Sci. 772:126-139 (1995).

    Google Scholar 

  13. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270:18997-19007 (1995).

    Google Scholar 

  14. R. L. Juliano and S. Akhtar. Liposomes as a drug delivery system for antisense oligonucleotides. Antisense Drug Res. Dev. 2:165-176 (1992).

    Google Scholar 

  15. S. K. Alahari, N. M. Dean, M. H. Fisher, R. Delong, M. Manoharan, K. L. Tivel, and R. L. Juliano. Inhibition of expression of the multidrug resistance-associated P-glycoprotein of by phosphorothioate and 5′ cholesterol-conjugated phosphorothioate anti-sense oligonucleotides. Mol. Pharmacol. 50:808-919 (1996).

    Google Scholar 

  16. M. Berton, S. Sixou, R. Kravtzoff, C. Dartigues, L. Imbertie, C. Allal, and G. Favre. Improved oligonucleotide uptake and stability by a new drug carrier, the SupraMolecular Bio Vector (SMBV). Biochim. Biophys. Acta 1355:7-19 (1997).

    Google Scholar 

  17. Q. Zhao, J. Temsamani, and S. Agrawal. Use of cyclodextrin and its derivatives as carriers for oligonucleotide delivery. Antisense Drug Res. Dev. 5:185-192 (1995).

    Google Scholar 

  18. S. Abdou, J. Collomb, F. Sallas, A. Marsura, and C. Finance. β-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence. Arch. Virol. 142:1585-1602 (1997).

    Google Scholar 

  19. J. G. Lewis, K. Y. Lin, A. Kothavale, W. M. Flanagan, M. D. Matteucci, R. B. DePrince, J. Mook RA, R. W. Hendren, and R. W. Wagner. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93:3176-3181 (1996).

    Google Scholar 

  20. O. Zelphati, L. S. Uyechi, L. G. Barron, and Jr. Szoka FC. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta 1390:119-133 (1998).

    Google Scholar 

  21. M. Poznanski and R. L. Juliano. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol. Rev. 36:277-336 (1984).

    Google Scholar 

  22. E. Tomlinson. Theory and practice of site-specific drug delivery. Adv. Drug Del. 1:87-198 (1987).

    Google Scholar 

  23. Y. Takakura and M. Hashida. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm. Res. 13:820-831 (1996).

    Google Scholar 

  24. M. J. Cho and R. Juliano. Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends Biotechnol. 14:153-158 (1996).

    Google Scholar 

  25. D. A. Tomalia, A. M. Naylor, and W. A. Goddard. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem. Int. E. Engl. 29:138-175 (1990).

    Google Scholar 

  26. A. Bielinska, J. F. Kukowska-Latallo, J. Johnson, D. A. Tomalia, and Jr. Baker JR. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24:2176-2182 (1996).

    Google Scholar 

  27. R. Delong, K. Stephenson, T. Loftus, M. Fisher, S. Alahari, A. Nolting, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762-764 (1997).

    Google Scholar 

  28. J. Haensler and Jr. Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture Bioconj. Chem. 4:372-379 (1993).

    Google Scholar 

  29. J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, and J. r. Baker JR. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 93:4897-4902 (1996).

    Google Scholar 

  30. L. Qin, D. R. Pahud, Y. Ding, A. U. Bielinska, J. F. Kukowska-Latallo, J. r. Baker JR, and J. S. Bromberg. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Human Gene Ther. 9:553-560 (1998).

    Google Scholar 

  31. M. X. Tang, C. T. Redemann, and Jr. Szoka FC. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconj. Chem. 7:703-714 (1996).

    Google Scholar 

  32. G. Hartmann, A. Krug, M. Bidlingmaier, U. Hacker, A. Eigler, R. Albrecht, C. J. Strasburger, and S. Endres. Spontaneous and cationic lipid-mediated uptake of antisense oligonucleotides in human monocytes and lymphocytes. J. Pharmacol. Exp. Ther. 285:920-928 (1998).

    Google Scholar 

  33. J. A. Hughes, A. V. Avrutskaya, K. L. Brouwer, E. Wickstrom, and R. L. Juliano. Radiolabeling of methylphosphonate and phosphorothioate oligonucleotides and evaluation of their transport in everted rat jejunum sacs. Pharm. Res. 12:817-824 (1995).

    Google Scholar 

  34. O. Zelphati and Jr. Szoka FC. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res. 13:1367-1372 (1996).

    Google Scholar 

  35. O. Zelphati and Jr. Szoka FC. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493-11498 (1996).

    Google Scholar 

  36. E. G. Marcusson, B. Bhat, M. Manoharan, C. F. Bennett, and N. M. Dean. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 26:2016-2023 (1998).

    Google Scholar 

  37. S. H. Kang, M. J. Cho, and R. Kole. Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235-6239 (1998).

    Google Scholar 

  38. H. Sierakowska, M. J. Sambade, S. Agrawal, and R. Kole. Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93:12840-12844 (1996).

    Google Scholar 

  39. J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res. 47:943-946 (1987).

    Google Scholar 

  40. R. K. DeLong, H. Yoo, S. K. Alahari, M. Fisher, S. M. Short, E. Zirbes, R. Kole, V. Janout, S. L. Regan, and R. L. Juliano. Novel cationic amphiphiles as delivery agents for antisense oligonucleotides. Nucleic Acids Res. 27:3334-3341 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Juliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, H., Sazani, P. & Juliano, R.L. PAMAM Dendrimers as Delivery Agents for Antisense Oligonucleotides. Pharm Res 16, 1799–1804 (1999). https://doi.org/10.1023/A:1018926605871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018926605871

Navigation