Skip to main content

Abstract

Delivery of nucleic acids to target cells can be achieved by both viral and nonviral delivery systems. Both of these methods have distinct advantages and disadvantages. In contrast to viral vectors, the nonviral ones provide the advantage of safety and flexibility. The disadvantage of nonviral carriers is their low efficiency. Inherent properties of dendritic nanoscale devices provide an ideal tool for development of synthetic (nonviral) carriers for delivery of nucleic acids. Among these properties, the defined architecture, high ratio of surface groups to molecular volume, and difference of hydropathic properties of interior and exterior are the most important for drug and gene delivery. Dendrimeric structures have been suggested to be used in gene therapy as potent carriers capable to, sometimes specifically, deliver DNA or RNA into the cells. Dendrimers are able to form complexes with many types of nucleic acids, such as plasmid DNA, antisense oligonucleotides, and RNA. Due to their defined architecture and a high ratio of multivalent surface moieties to molecular volume, they have become very important for the development of synthetic vectors for nucleic acid delivery. Indeed, dendrimer-based transfection agents have become routine tools for many molecular and cell biologists but the therapeutic delivery of nucleic acids complexed with dendrimer should be further investigated. The cationic dendrimers interact with the anionic backbone of nucleic acids mainly electrostatically. Complexed DNA is protected against degradation and the net positive charge of the dendrimer nucleic acid complex determines the transfection efficiency. However, highly cationic complexes are cytotoxic. Their properties can be tuned by many factors such as concentration of dendrimer amines and nucleic acid phosphates, salt concentration, stoichiometry, bulk solvent properties like pH, buffer strength, etc. For a development of dendriplex complexes with nucleic acids which can be used in gene therapy or, in general, as transfection reagents, knowledge of their transfection efficiencies and cytotoxicities is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoyama, Y.: Macrocyclic glycoclusters: from amphiphiles through nanoparticles to glycoviruses. Chem. Eur. J. 10(3), 588–593 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. Aoyama, Y.: Glycovirus. Trends Glycosci. Glycotechnol. 17(94), 39–47 (2005)

    Article  CAS  Google Scholar 

  3. Aoyama, Y., Kanamori, T., Nakai, T., Sasaki, T., Horiuchi, S., Sando, S., Niidome, T.: Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. 125(12), 3455–3457 (2003)

    CAS  Google Scholar 

  4. Boas, U., Christensen, J., Heegaard, P.: Dendrimers in Medicine and Biotechnology: New Molecular Tools. Dendrimers as Biomimics, pp. 152–172. RSC Publishing, Cambridge (2006)

    Google Scholar 

  5. Chen, Y., Wang, G., Kong, D., Zhang, Z., Yang, K., Liu, R., Zhao, W., Xu, Y.: Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol. Carcinogen (in press). doi: 10.1002/mc.21850

    Google Scholar 

  6. Diaz-Moscoso, A., Gourrierec, L., Gomez-Garcia, M., Benito, J., Balbuena, P., Ortega-Caballero, F., Guilloteau, N., Giorgio, C., Vierling, P., Defaye, J., Mellet, C., Fernandez, J.: Polycationic amphiphilic cyclodextrins for gene delivery: synthesis and effect of structural modifications on plasmid DNA complex stability, cytotoxicity, and gene expression. Chem. Eur. J. 15(46), 12871–12888 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. Dufes, C., Uchegbu, I., Schatzlein, A.: Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57(15), 2177–2202 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. Dutta, T., Jain, N., McMillan, N., Parekh, H.: Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine 6(1), e25–e34 (2010)

    Article  Google Scholar 

  9. Huang, R., Liu, S., Shao, K., Han, L., Ke, W., Liu, Y., Li, J., Huang, S., Jiang, C.: Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnol. 21(26), art. no. 265,101 (2010)

    Google Scholar 

  10. Inoue, Y., Kurihara, R., Tsuchida, A., Hasegawa, M., Nagashima, T., Mori, T., Niidome, T., Katayama, Y., Okitsu, O.: Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis. J. Control Rel. 126(1), 59–66 (2008)

    Article  CAS  Google Scholar 

  11. Ke, J.H., Wei, M.F., Shieh, M.J., Young, T.H.: Design, synthesis and evaluation of cationic poly(N-substituent acrylamide)s for in vitro gene delivery. J. Biomater. Sci. 22(9), 1215–1236 (2011)

    CAS  Google Scholar 

  12. Liu, Y., Huang, R., Han, L., Ke, W., Shao, K., Ye, L., Lou, J., Jiang, C.: Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomater. 30(25), 4195–4202 (2009)

    Article  CAS  Google Scholar 

  13. Luo, K., Li, C., Li, L., She, W., Wang, G., Gu, Z.: Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomater. 33(19), 4917–4927 (2012)

    Article  CAS  Google Scholar 

  14. Mastrobattista, E., van der Aa, M., Hennink, W., Crommelin, D.: Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discover. 5(2), 115–121 (2006)

    Article  Google Scholar 

  15. Menuel, S., Fontanay, S., Clarot, I., Duval, R., Diez, L., Marsura, A.: Synthesis and complexation ability of a novel bis-(guanidinium)-tetrakis-(β-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. study of cellular siRNA transfection. Bioconjug. Chem. 19(12), 2357–2362 (2008)

    Google Scholar 

  16. Mochizuki, S., Sakurai, K.: A novel polysaccharide/polynucleotide complex and its application to bio-functional DNA delivery system. Polym. J. 41(5), 343–353 (2009)

    Article  CAS  Google Scholar 

  17. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers, Part I. J. Pept. Sci. 14(1), 2–43 (2008)

    CAS  Google Scholar 

  18. Ortiz Mellet, C., Benito, J.M., Garcia Fernandez, J.M.: Preorganized, macromolecular, gene-delivery systems. Chem. Eur. J. 16(23), 6728–6742 (2010)

    Google Scholar 

  19. Padie, C., Maszewska, M., Majchrzak, K., Nawrot, B., Caminade, A.M., Majoral, J.P.: Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments. New J. Chem. 33(2), 318–326 (2009)

    Article  CAS  Google Scholar 

  20. Paleos, C., Tsiourvas, D., Sideratou, Z.: Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol. Pharmaceut. 4(2), 169–188 (2007)

    Article  CAS  Google Scholar 

  21. Paleos, C., Tziveleka, L.A., Sideratou, Z., Tsiourvas, D.: Gene delivery using functional dendritic polymers. Expert Opin. Drug Deliv. 6(1), 27–38 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. Sebestik, J., Niederhafner, P., Jezek, J.: Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40(2), 301–370 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. Shakhbazau, A., Isayenka, I., Kartel, N., Goncharova, N., Seviaryn, I., Kosmacheva, S., Potapnev, M., Shcharbin, D., Bryszewska, M.: Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Int. J. Pharmaceut. 383(1–2), 228–235 (2010)

    Article  CAS  Google Scholar 

  24. Shan, Y., Luo, T., Peng, C., Sheng, R., Cao, A., Cao, X., Shen, M., Guo, R., Toms, H., Shi, X.: Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomater. 33(10), 3025–3035 (2012)

    Article  CAS  Google Scholar 

  25. Shcharbin, D., Pedziwiatr, E., Blasiak, J., Bryszewska, M.: How to study dendriplexes II: transfection and cytotoxicity. J. Control Rel. 141(2), 110–127 (2010)

    Article  CAS  Google Scholar 

  26. Srinivasachari, S., Fichter, K., Reineke, T.: Polycationic β-cyclodextrin “click clusters”: monodisperse and versatile scaffolds for nucleic acid delivery. J. Am. Chem. Soc. 130(14), 4618–4627 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. Tsutsumi, T., Hirayama, F., Uekama, K., Arima, H.: Potential use of polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) as a novel carrier for short hairpin RNA-expressing plasmid DNA. J. Pharm. Sci. 97(8), 3022–3034 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. Waite, C.L., Sparks, S.M., Uhrich, K.E., Roth, C.M.: Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol. 9, art. no. 38 (2009)

    Google Scholar 

  29. Wang, W., Kaifer, A.: Cucurbituril and cyclodextrin complexes of dendrimers. Adv. Polym. Sci. 222(1), 205–235 (2009)

    CAS  Google Scholar 

  30. Wang, X., He, Y., Wu, J., Gao, C., Xu, Y.: Synthesis and evaluation of phenylalanine-modified hyperbranched poly(amido amine)s as promising gene carriers. Biomacromol. 11(1), 245–251 (2010)

    Article  CAS  Google Scholar 

  31. Wang, J., Lu, Z., Wientjes, M., Au, J.: Delivery of siRNA therapeutics: Barriers and carriers. AAPS J. 12, 492–503 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. Yellepeddi, V., Kumar, A., Palakurthi, S.: Surface modified poly(amido) amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin. Drug Deliv. 6(8), 835–850 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Šebestík, J., Reiniš, M., Ježek, J. (2012). Dendrimers in Gene Delivery. In: Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1206-9_14

Download citation

Publish with us

Policies and ethics