Skip to main content
Log in

Effect of Cyclodextrins on Protein Binding of Drugs: The Diflunisal/Hydroxypropyl-β-Cyclodextrin Model Case

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The binding of diflunisal to hydroxypropyl-β-cyclodextrin (HPβCD), bovine serum albumin (BSA), human serum albumin (HSA), normal human plasma, and mixed solutions of HPβCD/ protein was studied at 25°C, pH 7.4, by potentiometry using an electrode selective to diflunisal. The experimental data for diflunisal/ HPβCD fit well to the 1:1 binding model. The binding of diflunisal with each of the studied proteins was compatible with a model having two independent classes of binding sites. The binding of diflunisal in mixed solutions HPβCD/BSA, HPβCD/HSA, and HPβCD/plasma increased considerably when the HPβCD concentration was increased. The binding behavior of the two biomolecules in the mixed solutions of HPβCD/BSA or HPβCD/ HSA was described with an “additive” model formulated on the basis of the estimates of the binding parameters of diflunisal derived from the separate experiments with each one of the binders tested. The lower than theoretical binding observed in HPβCD/plasma solutions was ascribed to the competitive displacement of diflunisal from the HPβCD cavity by plasma cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Pitha, J. Milecki, H. Fales, L. Pannell, and K. Uekama. Hydroxypropyl-β-cyclodextrin: Preparation and characterization; Effects on solubility of drugs. Int. J. Pharm. 29:73–82 (1986).

    Google Scholar 

  2. M. E. Brewster, M. S. Hora, J. W. Simpkins, and N. Bodor. Use of 2-hydroxypropyl-β-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs. Pharm. Res. 8:792–796 (1991).

    Google Scholar 

  3. D. Duchene (ed.), New Trends in Cyclodextrins and Derivatives, Editions de Sante, Paris, 1991.

    Google Scholar 

  4. K. S. Estes, M. E. Brewster, A. I. Webb, and N. Bodor. A non-surfactant formulation for alfaloxone based on amorphous cyclodextrin: Activity studies in rats and dogs. Int. J. Pharm. 65:101–107 (1990).

    Google Scholar 

  5. M. E. Brewster, J. W. Simpkins, M. S. Hora, W. C. Stern, and N. Bodor. The potential use of cyclodextrins in parenteral applications. J. Parent. Sci. Technol. 43:231–240 (1991).

    Google Scholar 

  6. H. W. Frijlink, A. C. Eissens, N. R. Hefting, K. Poelstra, C. F. Lerk, and D. K. F. Meijer. The effect of parenterally administered cyclodextrins on the cholesterol levels in the rat. Pharm. Res. 8:9–16 (1991).

    Google Scholar 

  7. T. Irie, K. Fukunaga, and J. Pitha. Hydroxypropyl-cyclodextrins in parenteral use. I. Lipid dissolution and effects on lipid transfers in vitro. J. Pharm. Sci. 81:521–523 (1992).

    Google Scholar 

  8. T. Irie, K. Fukunaga, M. K. Garwood, T. O. Carpenter, J. Pitha, and J. Pitha. Hydroxypropylcyclodextrins in parenteral use. II. Effects on transport and disposition of lipids in rabbit and humans. J. Pharm. Sci. 81:524–528 (1992).

    Google Scholar 

  9. T. Nagai, O. Shirakura, and N. Nambu. Hypnotic potency, and the plasma and brain concentration of hexobarbital in the presence of cyclodextrins. In 3rd Int. Conf. Pharm. Technol., Paris, 31 May/2 June 1983, Vol. V, pp. 253–262.

    Google Scholar 

  10. O. Shirakura, N. Nambu, and T. Nagai. Effect of β-cyclodextrin on disposition of hexobarbital and phenobarbital in mice. J. Incl. Phenom. 2:613–621 (1984).

    Google Scholar 

  11. H. W. Frijlink, E. J. F. Franssen, A. C. Eissens, R. Oosting, C. F. Lerk, and D. K. F. Meijer. The effects of cyclodextrins on the disposition of intravenously injected drugs in the rat. Pharm. Res. 8:380–384 (1991).

    Google Scholar 

  12. A. Sharma, K. Anderson, and J. W. Baker. Flocculation of serum lipoproteins with cyclodextrins: Application to assay of hyperlipidemic serum. Clin. Chem. 36:529–532 (1990).

    Google Scholar 

  13. M. E. Ressing, W. Jiskoot, H. Talsma, C. W. van Ingen, E. C. Beuvery, and D. J. A. Crommelin. The influence of sucrose, dextran, and hydroxypropyl-β-cyclodextrin as lyoprotectants for a freeze-dried mouse IgG2a monoclonal antibody (MN12). Pharm. Res. 9:266–270 (1992).

    Google Scholar 

  14. R. K. Verbeeck, A. Boel, A. Buntinx, and P. J. de Schepper. Plasma protein binding and interaction studies with diflunisal, a new salicylate analgesic. Biochem. Pharmacol. 29:571–576 (1980).

    Google Scholar 

  15. T. Christopoulos and E. Diamandis. Binding studies using ion-selective electrodes. Examination of the picrate-albumin interaction as a model system. Anal. Chem. 62:360–367 (1990).

    Google Scholar 

  16. G. N. Valsami, P. E. Macheras, and M. A. Koupparis. Binding studies of ions to cyclodextrins using ion-selective electrodes. J. Pharm. Sci. 79:1087–1094 (1990).

    Google Scholar 

  17. G. N. Valsami, P. E. Macheras, and M. A. Koupparis. Binding study of the fluorescence probe 1-anilino-8-naphthalene-sulfonate to human plasma and human and bovine serum albumin using potentiometric titration. Pharm. Res. 8:888–892 (1991).

    Google Scholar 

  18. G. N. Valsami, M. A. Koupparis, and P. E. Macheras. Complexation studies of cyclodextrins with tricyclic antidepressants using ion-selective electrodes. Pharm. Res. 9:94–100 (1992).

    Google Scholar 

  19. E. E. Sideris, G. N. Valsami, M. A. Koupparis, and P. E. Macheras. Determination of association constants in cyclodextrin/drug complexation using the Scatchard plot: Application to β-cyclodextrin-anilinonaphthalenesulfonates. Pharm. Res. 9:1568–1574 (1992).

    Google Scholar 

  20. A. Craggs, G. J. Moody, and J. D. Thomas. PVC matrix membrane ion-selective electrodes. J. Chem. Educ. 51:541–544 (1974).

    Google Scholar 

  21. G. Scatchard. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672 (1949).

    Google Scholar 

  22. W. Loscher. A comparative study of the protein binding of anticonvulsant drugs in serum of dog and man. J. Pharmacol. Exp. Ther. 208:429–435 (1979).

    Google Scholar 

  23. M. Otto, P. May, K. Murray, and J. D. R. Thomas. Calibration of ionized calcium and magnesium with ligand mixtures for intracellular ion-selective electrode measurements. Anal. Chem. 57:1511–1517 (1985).

    Google Scholar 

  24. A. Angelakou, G. Valsami, M. Koupparis, and P. Macheras. Use of 1-anilino-8-naphthalene-sulfonate as an ion probe for the potentiometric study of the binding of sulphonamides to bovine serum albumin and plasma. J. Pharm. Pharmacol. 45:434–438 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sideris, E.E., Koupparis, M.A. & Macheras, P.E. Effect of Cyclodextrins on Protein Binding of Drugs: The Diflunisal/Hydroxypropyl-β-Cyclodextrin Model Case. Pharm Res 11, 90–95 (1994). https://doi.org/10.1023/A:1018901912619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018901912619

Navigation