Skip to main content
Log in

The Improvement of Confinement by the Use of RF Waves

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

It is suggested that the ponderomotive force induced by radio frequency (rf) waves in the range of the Alfven frequency can create a transport barrier in a tokamak. The linear and nonlinear behaviour of the drift-like perturbation with a parallel velocity shear is studied in the presence of rf waves. It is shown if the radial profile of the rf field energy is properly chosen the linear mode is stabilised and turbulent momentum transport reduces. The rf power required for this stabilisation is found to be rather modest and hence should be easily obtained in actual experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Wagner, G. Becker, K. Behringer et al. (1982). Phys. Rev. Lett., 49, 1408.

    Google Scholar 

  2. G. L. Jackson, J. Winter, T. S. Taylor et al. (1991). Phys. Rev. Lett., 67, 3098.

    Google Scholar 

  3. F. M. Levinton, M. C. Zarnstorff, S. H. Batha et al. (1995). Phys. Rev. Lett., 75, 4417.

    Google Scholar 

  4. E. J. Strait, L. L. Lao, M. E. Mauel et al. (1995). Phys. Rev. Lett., 75, 4421.

    Google Scholar 

  5. C. B. Forest (1996). Phys. Rev. Lett., 77, 3141.

    Google Scholar 

  6. G. G. Craddock and P. H. Diamond (1991). Phys. Rev. Lett., 67, 1535.

    Google Scholar 

  7. M. Ono, R. Bell, S. Bernabei et al., 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, Spain (International Atomic Energy Agency, Vienna, 1995), Vol. 1, p. 469.

    Google Scholar 

  8. V. S. Tsypin (1998). Phys. Rev. Lett., 81, 3403.

    Google Scholar 

  9. V. Ya. Goloborod'ko, 10th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, London (International Atomic Energy Agency, Vienna, 1984), Vol 2, p. 179.

    Google Scholar 

  10. J. R. Wilson (1998). Phys. Plasmas, 5, 1721.

    Google Scholar 

  11. B. P. LeBlanc (1999). Phys. Rev. Lett., 82, 331.

    Google Scholar 

  12. R. Gore (1978). Phys. Rev. Lett., 40, 1140.

    Google Scholar 

  13. N. S. Wolf (1980). Phys. Rev. Lett., 45, 799.

    Google Scholar 

  14. J. M. McBride (1985). Phys. Rev. Lett., 54, 42.

    Google Scholar 

  15. D. A. D'Ippolito, J. R. Myra, G. L. Francis et al. (1987). Phys. Rev. Lett., 58, 2216.

    Google Scholar 

  16. S. Sen and R. A. Cairns (1998). Phys. Plasmas, 5, 4280, the ponder omotive term in eq. (2) should read as \( - \frac{{1d}}{{2dx}}\left| {V_{RF} \left( x \right)} \right|^2 \frac{{n_j }}{{N_j }}\) and the sign before the same term in eq. (3) should be positive.

    Google Scholar 

  17. J. Q. Dong (1998). Phys. Plasmas, 5, 4328.

    Google Scholar 

  18. S. Sen, R. A. Cairns, R. G. Storer and D. R. McCarthy (2000). Phys. Plasma, 7, 1192.

    Google Scholar 

  19. R. D. Bengston (1995). Bull. Am. Phys. Soc., 40, 1810.

    Google Scholar 

  20. G. Wang (1998). Plasma Phys. Cont. Fus., 40, 429.

    Google Scholar 

  21. J. Willig (1997). Phys. Lett. A, 236, 223.

    Google Scholar 

  22. W. Daughton and S. Migliuolo (1996). Phys. Plasmas, 3, 3185.

    Google Scholar 

  23. A. Fasoli, J. A. Dobbing, C. Gormezano et al. (1996). Nucl. Fusion 36, 258.

    Google Scholar 

  24. S. Sen, M. G. Rusbridge and R. J. Hastie (1994). Nuc. Fusion 34, 87.

    Google Scholar 

  25. S. Sen, M. S. Janaki and B. Dasgupta (1991). Phys. Lett. A, 157, 411.

    Google Scholar 

  26. S. Sen (1995). Plasma Phys. Controlled Fus., 37, 95.

    Google Scholar 

  27. S. Sen and J. Weiland (1995). Phys. Plasmas, 2, 777.

    Google Scholar 

  28. J. B. Taylor and H. R. Wilson (1996). Plasma Phys. Controlled Fus., 38, 1999.

    Google Scholar 

  29. S. Sen (2000). “On applicability of ballooning formalism in the presence of parallel flow shear”, submitted to Phys. Lett. A.

  30. J. W. Connor, R. J. Hastie and J. B. Taylor (1979). Proc. of Royal Society A, 365, 1.

    Google Scholar 

  31. R. J. Hastie, K. Hesketh and J. B. Taylor (1979). Nuc. Fus., 19, 1223.

    Google Scholar 

  32. K. Appert, B. Balet, R. Gruber et al. (1983). Nuc. Fus., 22, 903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Fukuyama, A. The Improvement of Confinement by the Use of RF Waves. Journal of Fusion Energy 18, 57–63 (1999). https://doi.org/10.1023/A:1018879025723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018879025723

Navigation