Skip to main content
Log in

The Influence of Erosion-Induced Roughness on the Oxidation Kinetics of Ni and Ni-20Cr Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Surface roughness plays a dominant role inincreasing the oxidation rate of metals and alloysduring erosion compared to the oxidation rate in staticair. Ni and Ni-20Cr were eroded at two different impact velocities (35 and 65 m/s) and for twodifferent impact angles (90° and 30°). Theeroded samples were subsequently isothermally oxidizedin static air at three different test temperatures. Theincreased oxidation kinetics in the case of Ni could beexplained on the basis of increased roughness caused byerosion prior to oxidation. In the case of Ni-20Cr, theeffect of increased roughness on oxidation was largely offset by the fact that the number ofgrain-boundary diffusion paths decreased due tocoarsening of the grains of the oxide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. F. J. Quinn, Brit. J. Appl. Phys. 13, 33 (1962).

    Google Scholar 

  2. T. F. J. Quinn, J. L. Sullivan and D. M. Rowson, Wear 94, 175 (1984).

    Google Scholar 

  3. T. F. J. Quinn and J. L. Sullivan, Proc. Intern. Conf. Wear of Materials, (ASME, Dearborn, MI, 1979), p. 1.

    Google Scholar 

  4. S. C. Lim and M. F. Ashby, Acta Metallur. 35, 1 (1987).

    Google Scholar 

  5. G. Sundararajan, Wear 145, 251 (1991).

    Google Scholar 

  6. A. V. Levy, in Proc. Intern. Conf. Corrosion Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds. (The Minerals, Metals and Materials Society, 1989), p. 207.

  7. A. V. Levy, B. Q. Wang, Y. F. Man and N. Zec, Wear 131, 85 (1989).

    Google Scholar 

  8. G. Geng, B. Q. Wang, P. Y. Hou and A. V. Levy, Wear 150, 89 (1991).

    Google Scholar 

  9. S. L. Chang, F. S. Pettit, and N. Birks, Oxid. Met. 34, 23 (1990).

    Google Scholar 

  10. S. L. Chang, F. S. Pettit, and N. Birks, Oxid. Met. 34, 71 (1990).

    Google Scholar 

  11. M. Roy, Y. Tirupataiah, and G. Sundararajan, Mater. Sci. Eng. A165, 51 (1993).

    Google Scholar 

  12. M. Roy and G. Sundararajan, Thermogravime tric system: A facility for studying oxidation behaviour, DMRL Techn. Rep. No. DMRL-TR 96206, July 1996.

  13. C. T. Kang, F. S. Pettit, and N. Birks, Metal. Trans. 18A, 1785 (1987).

    Google Scholar 

  14. O. Kabaschewski and O. Von Goldbeck, Z. Metallk. 39, 158 (1948).

    Google Scholar 

  15. W. J. Moore and J. K. Lee, J. Chem. Phys. 19, 255 (1951).

    Google Scholar 

  16. Y. Matsunga, Jpn. Nick. Rev. 1, 457 (1933).

    Google Scholar 

  17. F. N. Rines and R. G. Connel, J. Electrochem. Soc. 124, 1122 (1997).

    Google Scholar 

  18. A. Atkinson, R. I. Taylor, and A. E. Hughes, Phil. Mag. A45, 823 (1982).

    Google Scholar 

  19. A. E. Hughes, A. Atkinson, and C. T. Chadwick, Mater. Res. Soc. Symp. Proc. 24, 27 (1984).

    Google Scholar 

  20. J. S. Choi and W. J. Moore, J. Chem. Phys. 66, 1308 (1962).

    Google Scholar 

  21. H. V. Atkinson, Oxid. Met. 24, 177 (1985).

    Google Scholar 

  22. G. R. Wallwork, Rep. Prog. Phys. 39, 401 (1976).

    Google Scholar 

  23. G. B. Abderrazik, G. Moulin, and A. M. Huntz, Oxid. Met. 33, 191 (1990).

    Google Scholar 

  24. P. Moulin, These de Docteur Ingenieur, Université Paris Sud. Orsay, France, (1978).

  25. G. B. Abderrazik, G. Moulin, and A. M. Huntz, Oxid. Met. 33, 237 (1990).

    Google Scholar 

  26. P. Moulin, A. M. Huntz and P. Lacombe, Acta. Metallur. 28, 745 (1980).

    Google Scholar 

  27. D. L. Douglass and J. S. Armijo, Oxid. Met. 2, 207 (1970).

    Google Scholar 

  28. G. C. Wood and T. Hodgkien, J. Electrochem. Soc. 113, 319 (1966).

    Google Scholar 

  29. D. L. Douglass, Corros. Sci., 8, 665 (1968).

    Google Scholar 

  30. P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  31. E. W. A. Young, P. C. M. Stiphout, and J. H. W. de Wit, J. Electrochem. Soc. 132, 887 (1985).

    Google Scholar 

  32. C. Greskovich, J. Am. Ceram. Soc. 67, C111 (1984).

    Google Scholar 

  33. W. C. Hagel and A. V. Seabolt, J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  34. D. Caplan and G. I. Sproule, Oxid. Met. 9, 459 (1975).

    Google Scholar 

  35. G. M. Ecer and G. H. Meier, Oxid. Met. 13, 119 (1979).

    Google Scholar 

  36. R. Morrell, Hand Book of Properties of Technical & Engineering Ceramics, (Her Majesty's Stationery Office, London).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M., Ray, K.K. & Sundararajan, G. The Influence of Erosion-Induced Roughness on the Oxidation Kinetics of Ni and Ni-20Cr Alloys. Oxidation of Metals 51, 251–272 (1999). https://doi.org/10.1023/A:1018870606617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018870606617

Navigation