Skip to main content
Log in

Net Secretion of Furosemide Is Subject to Indomethacin Inhibition, as Observed in Caco-2 Monolayers and Excised Rat Jejunum

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine if intestinal secretion occurs for the poorly bioavailable diuretic, furosemide.

Methods. Jejunal segments of male Sprague-Dawley rats were mounted on diffusion chambers, and the permeation of furosemide was measured across the excised tissue in both directions. Studies were repeated using cultured epithelia from adenocarcinoma cells (Caco-2) grown on filter inserts mounted in 6-well plates. Temperature-dependence and chemical inhibition by indomethacin was also tested using the cell culture model.

Results. Net secretion from rat intestine of over 3-fold was observed for 20 µM furosemide. Net secretion of furosemide by Caco-2 cells was over 300% greater than for intestinal segments (10-fold vs. 3-fold). For both models, a decrease in furosemide transport in the direction of secretion was observed in the presence of indomethacin (100 µM), although only results using the Caco-2 cells showed an increase in the absorptive transport. Furosemide secretion from Caco-2 cells decreased with decrease in temperature from 37°C to 4°C, suggesting a carrier-mediated process.

Conclusions. Furosemide appears to be secreted in the small intestine. These preliminary results indicate that furosemide bioavailability may be limited by an intestinal transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Jackson. Diuretics. In Goodman and Gilman's: The Pharmacological Basis of Therapeutics, 9th Edition, J. Hardman, L. Limbird, P. Molinoff, R. Ruddon, and A. G. Gilman (eds.), McGraw-Hill, New York, 1996, pp. 685–713.

    Google Scholar 

  2. M. Hammarlund-Udenaes and L. Z. Benet. Furosemide pharmacokinetics and pharmacodynamics in health and disease—An update. J. Pharmacokin. Biopharm. 17:1–46 (1989).

    Google Scholar 

  3. M. R. Kelly, R. E. Cutler, A. W. Forrey, and B. M. Kimpel. Pharmacokinetics of orally administered furosemide. Clin. Pharmacol. Ther. 15:178–86 (1974).

    Google Scholar 

  4. H. Bundgaard, T. Noørgaard, and N. M. Nielsen. Photodegradation and hydrolysis of furosemide and furosemide esters in aqueous solutions. Int. J. Pharm. 42:217–24 (1988).

    Google Scholar 

  5. R. K. Verbeeck, R. V. Patwardhan, J.-P. Villeneuve, G. R. Wilkinson, and R. A. Branch. Furosemide disposition in cirrhosis. Clin. Pharmacol. Ther. 31:719–25 (1982).

    Google Scholar 

  6. M. G. Lee and W. L. Chiou. Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J. Pharmacokin. Biopharm. 11:623–40 (1983).

    Google Scholar 

  7. J. Valentine, D. C. Brater, and G. J. Krejs. Clearance of furosemide by the gastrointestinal tract. J. Pharmacol. Exp. Ther. 236:177–80 (1986).

    Google Scholar 

  8. D. E. Smith and L. Z. Benet. Biotransformation of furosemide in kidney transplant patients. Eur. J. Clin. Pharmacol. 24:787–90 (1983).

    Google Scholar 

  9. V. Pichette and P. du Soich. Role of the kidneys in the metabolism of furosemide: Its inhibition by probenecid. J. Am. Soc. Nephrol. 7:345–9 (1996).

    Google Scholar 

  10. M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, C. L. Marsh, J. P. McVicar, D. M. Barr, B. S. Gillies, and K. E. Thummel. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 60:14–24 (1996).

    Google Scholar 

  11. U. Mayer, E. Wagenaar, J. H. Beijnen, J. W. Smit, D. K. F. Meijer, J. van Aspereren, P. Borst, and A. Schinkel. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdrla P-glycoprotein. Br. J. Pharmacol. 119:1038–44 (1996).

    Google Scholar 

  12. C. Y. Wu, L. Z. Benet, M. F. Hebert, S. K. Gupta, M. Rowland, D. Y. Gomez, and V. J. Wacher. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine. Clin. Pharmacol. Ther. 58:492–7 (1995).

    Google Scholar 

  13. F. Thiebaut, T. Tsuro, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissue. Proc. Nat. Acad. Sci., USA 84:7735–38 (1987).

    Google Scholar 

  14. P. Watkins. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv. Drug Del. Rev. 27:161–70 (1997).

    Google Scholar 

  15. D. E. Smith, W. L. Gee, D. C. Brater, E. Lin, and L. Z. Benet. Preliminary evaluation of furosemide-probenecid interaction in humans. J. Pharm. Sci. 69:571–5 (1980).

    Google Scholar 

  16. H. Saitoh and B. J. Aungst. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm. Res. 12:1304–10 (1995).

    Google Scholar 

  17. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–49 (1989).

    Google Scholar 

  18. A. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–10 (1990).

    Google Scholar 

  19. F. Delie and W. Rubas. A human colonic cell line sharing similarities with eneterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit. Rev. Therap. Drug Carrier Sys. 14:221–85 (1997).

    Google Scholar 

  20. D. E. Smith, D. C. Brater, E. Lin, and L. Z. Benet. Attenuation of furosemide's pharmacokinetic effect by indomethacin: Pharmacokinetic evaluation. J. Pharmacokin. Biopharm. 7:265–74 (1979).

    Google Scholar 

  21. R. Bendayan. Renal drug transport: A review. Pharmacotherapy 16:971–85 (1996).

    Google Scholar 

  22. G. K. Collington, J. Hunter, C. N. Allen, N. L. Simmons, and B. H. Hirst. Polarized efflux of 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein from cultured epithelial cell monolayers. Biochem. Pharmacol. 44:417–24 (1992).

    Google Scholar 

  23. H. Saitoh, C. Gerard, and B. J. Aungst. The secretory intestinal transport of some beta-lactam antibiotics and anionic compounds: A mechanism contributing to poor oral absorption. J. Pharmacol. Exp. Ther. 278:205–11 (1996).

    Google Scholar 

  24. M. P. Draper, R. L. Martell, and S. B. Levy. Indomethacin-mediated reversal of multidrug reistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein. Br. J. Cancer 75:810–15 (1997).

    Google Scholar 

  25. M. Kool, M. de Haas, G. L. Scheffer, R. J. Scheper, M. van Eijk, J. A. Juijn, F. Baas, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP-5, homologues of the multidrug resistance-associated protein gene (MRP-1), in human cancer cell lines. Cancer Res. 57:3537–47 (1997).

    Google Scholar 

  26. Z. Holló, L. Homolya, T. Hegedüs, and B. Sarkadi. Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. FEBS Lett. 383:99–104 (1996).

    Google Scholar 

  27. R. Evers, G. Zaman, L. van Deetmer, H. Jansen, J. Calafat, L. Oomen, R. Oude Elferink, P. Borst, and A. H. Schinkel. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest. 97:1211–18 (1996).

    Google Scholar 

  28. R. Evers, M. Kool, L. van Deetmer, H. Jansen, J. Calafat, L. Oomen, C. C. Paulusma, R. Oude Elferink, F. Baas, A. H. Schinkel, and P. Borst. Drug export activity of the human canicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest. 101:1310–19 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Z. Benet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, S.D., Benet, L.Z. Net Secretion of Furosemide Is Subject to Indomethacin Inhibition, as Observed in Caco-2 Monolayers and Excised Rat Jejunum. Pharm Res 16, 221–224 (1999). https://doi.org/10.1023/A:1018868123367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018868123367

Navigation