Skip to main content
Log in

Kinetics and Mechanism of Iodide-Film Growth on Lead-Effect of Short-Circuiting and Lower-Valent Dopant

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of Ag as a lower-valent dopant onthe kinetics of lead iodination under normal andshort-circuit conditions in iodine pressures of 0.615 to6.578 kPa in the temperature range of 423 to 523 K was investigated. Like pure Pb, Ag-doped Pbalso follows the parabolic law of film growth. Theisothermal parabolic rate constants are found todecrease in the presence of the dopant. The iodinevapor-pressure dependence of isothermal parabolic rateconstants was observed to be kP ∝p 1/2I2 . Results for normal iodination areexplained in terms of migration of electron holes underthe influence of Cabrera-Mott's electrical field across the film. Theactivation energy for normal iodination of Ag-doped Pbis estimated to be 84 kJ•mol-1 comparedto that of 64 kJ•mol-1 for pure lead. Therate of iodide-film growth has been found to decrease further undershort-circuit mode of experiments. Such observationshave been explained with the concept of ion migration asthe ratelimiting step for the film-growth process. The iodine pressure dependence of the rateconstants under short-circuit conditions is observed tobe kP ∝ p 1/3I2 associatedwith an activation energy value of 66kJ•mol-1. Unlike pure lead, introduction of additional resistances in series to theshort-circuit Pt path during iodination of Ag-doped Pbcaused an increase in the rates with gradual increasedvalue of resistances. Kinetics results are explained by considering the prevalence ofSchottky-Wagner type of point defects in lead iodide.The driving forces for migration of the defect speciesthrough the growing pure PbI2 films andAg-doped PbI2 are confirmed to be Wagner's electrochemical potentialgradient and Cabrera-Mott's electrical field,respectively. The iodide films were characterized bySEM, EDS, EPMA, AES, and XRD analyses to substantiatethe kinetic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Schoonman, A. Wolfert, and D. F. Untereker, Solid State Ionics 11, 187 (1983).

    Google Scholar 

  2. A. M. Salau, Solar Energy Mater. 2, 327 (1980).

    Google Scholar 

  3. D. Z. Edwards, J. Z. Gier, Z. E. Nelson, and R. D. Roddick, J. Solar Energy, 6, 1 (1962).

    Google Scholar 

  4. C. Manfredotti, R. Murri, A. Quirini, and L. Vasanelli, IEEE Trans. Nucl. Sci. 24, 126 (1977).

    Google Scholar 

  5. J. C. Lund, K. S. Shah, M. R. Squillante, and F. Sinclair, IEEE Trans. Nucl. Sci. 35, 89 (1988).

    Google Scholar 

  6. R. I. Dawood and A. J. Forty, Phil. Mag. 8, 1003 (1963).

    Google Scholar 

  7. A. E. Dugan and H. K. Henisch, J. Phys. Chem. Solids 28, 1885 (1967).

    Google Scholar 

  8. J. F. Verway, J. Phys. Chem. Solids 31, 163 (1970).

    Google Scholar 

  9. J. Malinowsky, Photo. Sci. Eng. 15, 175 (1971).

    Google Scholar 

  10. S. Baidyaroy, W. R. Bottoms, and P. Mark, J. Phys. Chem. Solids 33, 357 (1972).

    Google Scholar 

  11. J. Schoonman, Solid State Commun. 13, 673 (1973).

    Google Scholar 

  12. A. P. Lingras and G. Simkovich, J. Phys. Chem. Solids 39, 1225 (1978).

    Google Scholar 

  13. K. Hauffe, Oxidation of Metals (Plenum Press, New York, 1965), p. 157.

    Google Scholar 

  14. W. Jost, Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1952), p. 185.

    Google Scholar 

  15. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover Pub., New York, 1948), p. 53.

    Google Scholar 

  16. H. K. Henisch and C. Srinivasgopalan, Solid State Commun. 4, 415 (1966).

    Google Scholar 

  17. N. L. Dmitruk, V. M. Shari, M. T. Kostyshin, and E. V. Mikhailovskaya, Sov. Phys. Semiconductor 14, 350 (1980).

    Google Scholar 

  18. S. C. Kuiry, S. K. Roy, and S. K. Bose, Mater. Res. Bull. 31, 317 (1996).

    Google Scholar 

  19. J. H. Eriksen and K. Hauffe, Proc. 5th Scand. Corros. Congr., Copenhagen, 1968, p. 38–I.

  20. R. N. Patnaik, S. K. Bose, and S. C. Sircar, Brit. Corros. J. 12, 57 (1977).

    Google Scholar 

  21. S. K. Bose and S. C. Sircar, Trans. Indian Inst. Met. 33, 37 (1980); ibid 33, 45 (1980).

    Google Scholar 

  22. S. C. Kuiry, S. K. Roy, and S. K. Bose, Oxid. Met. 46, 399 (1996).

    Google Scholar 

  23. S. C. Kuiry, S. K. Roy, and S. K. Bose, Oxid. Met. 47, 295 (1997).

    Google Scholar 

  24. A. T. Fromhold, J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  25. A. T. Fromhold, Theory of Metal OxidationÐ Fundamentals (North-Holland, Amsterdam, 1976), Vol. 1, p. 204.

    Google Scholar 

  26. R. I. Dawood and A. J. Forty, Phil. Mag. 7, 1633 (1962).

    Google Scholar 

  27. C. Tubandt, H. Reinhold, and G. Liebold, Z. Anorg. Chem. 197, 225 (1931).

    Google Scholar 

  28. G. von Hevesy and W. Seith, Z. Phys. 56, 790 (1929).

    Google Scholar 

  29. N. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  30. S. K. Bose, S. K. Mitra, and S. K. Roy, Oxid. Met. 46, 73 (1996).

    Google Scholar 

  31. S. C. Kuiry, Ph.D Thesis, I.I.T. Kharagpur, India (1995).

    Google Scholar 

  32. O. Kubachewski and C. B. Alcock, Metallurgical Thermochemist ry (Pergamon Press, New York, 1989) p. 384.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuiry, S.C., Roy, S.K. & Bose, S.K. Kinetics and Mechanism of Iodide-Film Growth on Lead-Effect of Short-Circuiting and Lower-Valent Dopant. Oxidation of Metals 49, 431–453 (1998). https://doi.org/10.1023/A:1018855129931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018855129931

Navigation