Skip to main content
Log in

Internal Nitridation of Nickel-Base Alloys. Part I. Behavior of Binary and Ternary Alloys of the Ni-Cr-Al-Ti System

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The internal-nitriding behavior of several modelalloys of the Ni-Cr-Al-Ti system in an oxygen-freenitrogen atmosphere at 800-1100°C was studied.Thermogravimetry as well as various metallographic techniques (SEM and TEM) were used. It wasshown that both the nitrogen solubility and the nitrogendiffusion coefficient are strongly affected by the Crcontent of the Ni alloy. Hence, in Ni-Cr-Ti alloys a higher chromium content leads to an increaseddepth of the internal precipitation of TiN. Nitridationof the alloying element Cr takes place only at highconcentrations of Cr. In general, the nitridation rate was found to obey Wagner's parabolic ratelaw of internal oxidation. Changes in the parabolic rateconstant with alloy composition can be understood bymeans of thermodynamic calculations in combination with microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Swaminathan and J. M. Allen, Mater. Manuf. Proc. 10, 867 (1995).

    Google Scholar 

  2. J. Litz, A. Rahmel, and M. Schorr, Oxid. Met. 30, 95 (1989).

    Google Scholar 

  3. M. Welker, A. Rahmel, and M. Schütze, Metall. Trans. A 20A, 1553 (1989).

    Google Scholar 

  4. M. Welker, A. Rahmel, and M. Schütze, Metall. Trans. A 20A, 1541 (1989).

    Google Scholar 

  5. B. Kolsch, A. Rahmel, and M. Schorr, Mater. Werkst. 20, 369 (1989).

    Google Scholar 

  6. E. Aghion, M. Bamberger, and A. Berkovitz, Mater. Sci. Eng. A 147, 181 (1991).

    Google Scholar 

  7. G. Y. Lai, Proc. Materials for Advanced Power Engineering 1994, D. Coutsouradis et al., Eds. (Liege, Belgium, 1994), p. 1263.

    Google Scholar 

  8. G. Y. Lai, Proc. ASM 1993 Materials CongressÐ Materials Week 93, Advanced Materials and Coatings for Combustion Turbines, V. P. Swaminathan and N. S. Cheruvu, Eds. (Pittsburgh, Pennsylvania 1993), p. 113.

  9. J. J. Moran, J. R. Mihalisin, and E. N. Skinner, Corrosion-NACE 17, 191 (1961).

    Google Scholar 

  10. J. J. Barnes and G. Y. Lai, Proc. Corrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, Eds. (The Minerals, Metals and Materials Society, Las Vegas, Nevada, 1989), p. 617.

    Google Scholar 

  11. G. D. Smith and P. J. Bucklin, Proc. Corrosion 86, Houston, Texas, 1986, Paper No. 375.

  12. K. Tjorko and D. J. Young, Oxid. Met. 44, 453 (1995).

    Google Scholar 

  13. R. P. Rubly and D. L. Douglass, Oxid. Met. 35, 259 (1991).

    Google Scholar 

  14. D. L. Douglass, J. Mater. 11, 74 (1991).

    Google Scholar 

  15. G. C. Savva, G. C. Weatherly, and J. S. Kirkaldy, Scripta Metal. 34, 1087 (1996).

    Google Scholar 

  16. G. C. Savva, G. C. Weatherly, and J. S. Kirkaldy, Met. Mater. Trans. 27A, 1611 (1996).

    Google Scholar 

  17. I. C. Chen and D. L. Douglass, Oxid. Met. 38, 189 (1992).

    Google Scholar 

  18. Y. M. Lakhtin, Y. D. Kogan, O. G. Golubeva, and E. P. Daneliya, Russ. Metall. 1, 188 (1984).

    Google Scholar 

  19. J. L. Arnold and W. C. Hagel, Metall. Trans. 3, 1471 (1972).

    Google Scholar 

  20. R. P. Rubly and D. L. Douglass, High Temperature Corrosion of Advanced Materials and Protective Coatings, Y. Saito, B. Onay, and T. Maruyama, Eds. (Elsevier, Tokyo, Japan, 1992), p. 133.

    Google Scholar 

  21. C. Wagner, Z. Elektrochemie. 63, 772 (1959).

    Google Scholar 

  22. G. Böhm and M. Kahlweit, Acta Metall. 12, 642 (1964).

    Google Scholar 

  23. H.-J. Christ and H. G. Sockel, High Temp. Technol. 5, 123 (1987).

    Google Scholar 

  24. A. A. Kodentsov, J. H. Gülpen, C. Cserháti, J. K. Kivilathi, and F. J. J. van Loo, Met. Mater. Trans. A 27A, 59 (1996).

    Google Scholar 

  25. N. Ono, M. Kajihara, and M. Kikuchi, Metall. Trans. A 23, 1389 (1992).

    Google Scholar 

  26. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Google Scholar 

  27. G. Erickson and K. Hack, Metall. Trans. B 21, 1013 (1990).

    Google Scholar 

  28. E. T. Turkdogan and S. Ignatowicz, J. Iron Steel Inst. 3, 242 (1958).

    Google Scholar 

  29. H. A. Wriedt and O. D. Gonzalez, Trans. Met. Soc. AIME 221, 532 (1961).

    Google Scholar 

  30. E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  31. D. B. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow, Phil. Mag. A 46, 931 (1982).

    Google Scholar 

  32. F. H. Stott, Mat. Sci. Technol. 4, 1072 (1988).

    Google Scholar 

  33. H. C. Yi, S. W. Guan, W. W. Smeltzer, and A. Petric, Acta Met. Mat. 42, 981 (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupp, U., Christ, HJ. Internal Nitridation of Nickel-Base Alloys. Part I. Behavior of Binary and Ternary Alloys of the Ni-Cr-Al-Ti System. Oxidation of Metals 52, 277–298 (1999). https://doi.org/10.1023/A:1018843612011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018843612011

Navigation