Skip to main content
Log in

Oxidation Behavior of Nanocrystalline Al Alloys Containing 5 and 10 at.% Ti

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of mechanically alloyed(MA) Al-Ti alloys containing 5 and 10 at.% Ti wereinvestigated at 500-600°C under 1 atm of oxygen. Ateach temperature, alloys oxidized linearly during the initial stage and later followed the parabolicrate law. During the initial stage, the oxidation ratesof nanocrystalline (≤50 nm) Al-Ti alloys were fasterthan those of conventional (≤200 nm) alloys. It is suggested that more grain boundaries innanocrystalline alloys provide more nucleation sites foroxides, so that the oxide scales grew faster as denseprotective layers. During the parabolic stage, the nanocrystalline alloys had greater oxidationresistance than conventional alloys because of the denseprotective layer. Oxide scales on both alloys consistedof a mixture of γ-Al2O3 andTiO2 in the outer layer andγ-Al2O3 near the alloy as aprotective layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. H. Froes, Met. Powder Rep. 44, 59 (1989).

    Google Scholar 

  2. D. J. Skinner, R. L. Bye, D. Raybould, and A. M. Brown, Scripta Metall. 20, 867 (1986).

    Google Scholar 

  3. R. Sundarensan and F. H. Froes, Met. Powder Rep. 44, 195 (1989).

    Google Scholar 

  4. W. L. Johnson, Prog. Mat. Sci. 30, 81 (1986).

    Google Scholar 

  5. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49, 146 (1986).

    Google Scholar 

  6. C. C. Koch, Nanostruct. Mat. 2, 109 (1993).

    Google Scholar 

  7. C. P. Dogan, J. C. Rawers, R. D. Govier, and G. Korth, Nanostruct. Mat. 4, 631 (1994).

    Google Scholar 

  8. J. S. C. Jang, S. G. Donnelly, P. Godavarti, and C. C. Koch, Int. J. Power. Metall. 24, 315 (1988).

    Google Scholar 

  9. R. Lerf and D. G. Morris, Mat. Sci. Eng. A128, 119 (1990).

    Google Scholar 

  10. K. Schubert, in Intermetallic Compounds, H. Westbrook, ed. (Krieger, New York, 1977), pp. 118, 159.

    Google Scholar 

  11. R. C. Benn, P. K. Mirchandanie, and A. S. Watwe, in Modern Developments in P/M, Vol. 21 (Metal Power Industries Federation, Princeton, NJ, 1988), p. 479.

    Google Scholar 

  12. K.-M. Lee and I.-H. Moon, Mat. Sci. Eng. A185, 165 (1994).

    Google Scholar 

  13. K. Y. Wany, J. G. Wang, and G. L. Chen, J. Mat. Res. 10, 1247 (1995).

    Google Scholar 

  14. B. Mei, R. Yuan, and X. Duan, J. Mat. Res. 8, 2830 (1993).

    Google Scholar 

  15. J. G. Goedjen and D. A. Shores, Oxid. Met. 37, 125 (1992).

    Google Scholar 

  16. S. N. Basu and G. J. Yurek, Oxid. Met. 36, 281 (1991).

    Google Scholar 

  17. M. K. Hossian, Corros. Sci. 19, 1031 (1979).

    Google Scholar 

  18. H.-J. Lim, S.-W. Park, and S.-G. Kang, Oxid. Met. 48, 391 (1997).

    Google Scholar 

  19. W. W. Smeltzer, J. Electrochem. Soc. 103, 209 (1956).

    Google Scholar 

  20. M. J. Dignam and W. R. Fawcett, J. Electrochem. Soc. 113, 663 (1966).

    Google Scholar 

  21. K. Shimizu, R. C. Furneaux, G. E. Thompson, G. C. Wood, A. Gotch, and K. Kobayashi, Oxid. Met. 35, 427 (1991).

    Google Scholar 

  22. G.-H. Kim, Master Thesis, Han Yang University, Seoul, Korea, 1991.

  23. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, J. Mat. Sci. 25, 1599 (1989).

    Google Scholar 

  24. C. Lang and M. Schütze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  25. S. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  26. Y. Shida and H. Anada, Corros. Sci. 35, 945 (1993).

    Google Scholar 

  27. P. Kofstad, Oxid. Met. 24, 265 (1985).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, JS., Lim, HJ. & Kang, SG. Oxidation Behavior of Nanocrystalline Al Alloys Containing 5 and 10 at.% Ti. Oxidation of Metals 51, 79–95 (1999). https://doi.org/10.1023/A:1018802218912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018802218912

Navigation