Skip to main content
Log in

Determining Liquid Structure from the Tail of the Direct Correlation Function

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In important early work, Stell showed that one can determine the pair correlation function h(r) of the hard-sphere fluid for all distances r by specifying only the “tail” of the direct correlation function c(r) at separations greater than the hard-core diameter. We extend this idea in a very natural way to potentials with a soft repulsive core of finite extent and a weaker and longer ranged tail. We introduce a new continuous function T(r) which reduces exactly to the tail of c(r) outside the (soft) core region and show that both h(r) and c(r) depend only on the “out projection” of T(r): i.e., the product of the Boltzmann factor of the repulsive core potential times T(r). Standard integral equation closures can thus be reinterpreted and assessed in terms of their predictions for the tail of c(r) and simple approximations for its form suggest new closures. A new and very efficient variational method is proposed for solving the Ornstein–Zernike equation given an approximation for the tail of c. Initial applications of these ideas to the Lennard-Jones and the hard-core Yukawa fluid are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, e.g., J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).

    Google Scholar 

  2. For an excellent review of Stell's early work, see G. Stell, in Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (W. A. Benjamin, New York, 1964), p. II-171.

    Google Scholar 

  3. J. K. Percus and G. J. Yevick, Phys. Rev. 110:1 (1958).

    Google Scholar 

  4. J. K. Percus, in Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (W. A. Benjamin, New York, 1964), p. II-46.

    Google Scholar 

  5. D. Levesque, Physica 32:1985 (1966).

    Google Scholar 

  6. G. Stell, Physica 29:517 (1963).

    Google Scholar 

  7. See, e.g., J. S. Hoye and G. Stell, J. Chem. Phys. 67:439 (1977); J. S. Hoye, J. L. Lebowitz, and G. Stell, J. Chem. Phys. 61:3253 (1974); and references therein.

    Google Scholar 

  8. W. G. Madden and S. A. Rice, J. Chem. Phys. 72:4208 (1980).

    Google Scholar 

  9. F. Lado, Phys. Rev. A 8:2548 (1973).

    Google Scholar 

  10. G. Zerah and J. P. Hansen, J. Chem. Phys. 84:2336 (1986).

    Google Scholar 

  11. H. S. Kang and F. H. Ree, J. Chem. Phys. 103:3629 (1995) and references therein.

    Google Scholar 

  12. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237 (1971).

    Google Scholar 

  13. L. S. Ornstein and F. Zernike, Proc. Akad. Sci. (Amsterdam) 17, 793 (1914).

    Google Scholar 

  14. R. Dickman and G. Stell, Phys. Rev. Lett. 77:996 (1996); D. Pini, G. Stell, and R. Dickman, Phys. Rev. E 57:2862 (1998).

    Google Scholar 

  15. See, e.g., L. L. Lee, J. Chem. Phys. 103:9388 (1995).

    Google Scholar 

  16. E. Waisman, Mol. Phys. 25:45 (1973).

    Google Scholar 

  17. For a contrary view, see ref. 15.

  18. G. Stell, in Modern Theoretical Chemistry, Vol. 5: Statistical Mechanics, B. J. Berne, ed. (Plenum Press, New York, 1977), p. 47.

    Google Scholar 

  19. H. C. Andersen and D. Chandler, J. Chem. Phys. 57:1918 (1972).

    Google Scholar 

  20. D. Duh and A. D. J. Haymet, J. Chem. Phys. 103:2625 (1995).

    Google Scholar 

  21. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).

    Google Scholar 

  22. L. L. Lee, J. Chem. Phys. 97:8606 (1992).

    Google Scholar 

  23. G. A. Martynov and G. N. Sarkisov, Mol. Phys. 49:1495 (1983); P. Ballone et al., Mol. Phys. 59:275 (1986).

    Google Scholar 

  24. M. LLano-Restrepo and W. G. Chapman, J. Chem. Phys. 100:5139 (1994).

    Google Scholar 

  25. D. Duh and D. Henderson, J. Chem. Phys. 104:6742 (1996).

    Google Scholar 

  26. D. Pini, G. Stell, and N. B. Wilding, Mol. Phys. 95:483 (1998); D. Pini, G. Stell, and J. S. Hoye, Int. J. Thermophys. 19:1029 (1998).

    Google Scholar 

  27. L. Belloni, J. Chem. Phys. 98:8080 (1993).

    Google Scholar 

  28. L. Belloni, J. Chem. Phys. 88:5143 (1988).

    Google Scholar 

  29. D. Henderson, E. Waisman, J. L. Lebowitz, and L. Blum, Mol. Phys. 35:241 (1978).

    Google Scholar 

  30. C. Rey, L. J. Gallego, and L. E. Gonzalez, J. Chem. Phys. 96:6984 (1992).

    Google Scholar 

  31. J. D. Weeks, K. Vollmayr, and K. Katsov, Physica (Amsterdam) A 244:461 (1997).

    Google Scholar 

  32. W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

  33. A. H. Narten, L. Blum, and R. H. Fowler, J. Chem. Phys. 60:3378 (1974).

    Google Scholar 

  34. W. Olivares and D. A. McQuarrie, J. Chem. Phys. 65:3604 (1976).

    Google Scholar 

  35. M. J. Gillan, Mol. Phys. 38:1781 (1979); G. Zerah, J. Comput. Phys. 61:280 (1985).

    Google Scholar 

  36. Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 103:7463 (1995).

    Google Scholar 

  37. D. Chandler, Phys. Rev. E 48:2989 (1993); G. E. Crooks and D. Chandler, Phys. Rev. E 56:4217 (1997). See also G. Hummer et al., Proc. Natl. Acad. Sci. 93:8951 (1996).

    Google Scholar 

  38. D. E. Sullivan and G. Stell, J. Chem. Phys. 69:5450 (1978); D. E. Sullivan, D. Levesque, and J. J. Weis, J. Chem. Phys. 72:1170 (1980).

    Google Scholar 

  39. J. D. Weeks, K. Katsov, and K. Vollmayr, Phys. Rev. Lett. 81:4400 (1998); K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B 103:4570 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsov, K., Weeks, J.D. Determining Liquid Structure from the Tail of the Direct Correlation Function. Journal of Statistical Physics 100, 107–134 (2000). https://doi.org/10.1023/A:1018683410684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018683410684

Navigation