Skip to main content
Log in

Fractals and fractal scaling in fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A review of modern fractal models of fracture in brittle and quasibrittle materials is given. The difference between mathematical and physical fractal approaches is emphasized. The scaling for both a fractal solitary crack and a fractal pattern of microcracks surrounding the main fracture is considered. Some concepts appropriate for fractal description of fracture are discussed. It is shown that if the layer of inelastic deformations in quasibrittle materials has the same order of magnitude as the upper cutoff of the fractal scaling then fractal properties of the main crack surface do not corellate with fracture energy. This observation selects the cases when the concept of the universal roughness exponent may be valid. It is shown that the corellation between fractal properties of fractal pattern of microcracks and the fracture energy of polyphase materials is usually possible. The case of different fractal dimensions for different length scales is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avnir, D., Biham, O., Lidar (Hamburger), D. and Malcai, O. (1997). On the abundance of fractals. In: Fractal Frontiers (Edited by M.M. Novak and T.G. Dewey), World Scientific, Singapore, 199–234.

    Google Scholar 

  • Balankin, A.S. (1996). The effect of fracture surface morphology on the crack mechanics in a brittle material. International Journal of Fracture 76, R63-R70.

    Article  Google Scholar 

  • Baran, G.R., Roques-Carmes, C., Wehbi, D. and Degrange, M. (1992). Fractal characteristics of fracture surfaces. Journal of the American Ceramic Society 75, 2687–2691.

    Article  Google Scholar 

  • Barenblatt, G.I. (1993). Some general aspects of fracture mechanics. In: Modeling of Defects and Fracture Mechanics (Edited by G. Herrmann), Springer-Verlag, Wien, New York, 29–59.

    Google Scholar 

  • Barenblatt, G.I. and Botvina, L.R. (1986). Similarity methods in mechanics and physics of fracture. Fiz.-Khim. Mekh. Mater. 1, 57–62.

    Google Scholar 

  • Barenblatt, G.I. and Monin, A.S. (1983). Similarity principles for the biology of pelagic animals. Proceeding of the National Academic Science of USA 80, 3540–3542.

    Article  ADS  Google Scholar 

  • Barnsley, M. (1988). Fractals Everywhere, Academic Press, Boston.

    MATH  Google Scholar 

  • Bažant, Z.P. (1984). Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics 110, 518–535.

    Article  Google Scholar 

  • Bažant, Z.P. (1995). Scaling of quasi-brittle fracture and the fractal question. ASME Journal of Materials and Technology 117, 361–367.

    Article  Google Scholar 

  • Bažant, Z.P. (1997a). Scaling in nonlinear fracture mechanics. In: IUTAM Symposium on Nonlinear Analysis of Fracture, University of Cambridge, 3–7 September 1995 (Edited by J.R. Willis), Kluwer Academic Publishers, Dordrecht, 1–12.

    Google Scholar 

  • Bažant, Z.P. (1997b). Scaling of quasibrittle fracture: hypotheses of invasive and lacunar fractality, their critique and Weibull connection. International Journal of Fracture 29, 1699–1709.

    Google Scholar 

  • Bažant, Z.P., Gettu, R. and Kazemi, M.T. (1991). Identification of nonlinear fracture from size effect tests and structural analysis based on geometry-dependent R-curves. International Journal of Rock Mechanics and Mining Sciences 28, 43–51.

    Article  Google Scholar 

  • Borodich, F.M. (1992). Fracture energy in a fractal crack propagating in concrete or rock. Doklady Akademii Nauk (Russia) 325, 1138–1141 (English transl. in: Transactions (Doklady) of the Russian Akademy of Sciences: Earth Science Sections 327(8), 36–40).

    Google Scholar 

  • Borodich, F.M. (1994a). Fracture energy of brittle and quasi-brittle fractal cracks. IFIP Transactions: A. Computer Science and Technology 41, 61–68.

    Google Scholar 

  • Borodich, F.M. (1994b). Some applications of the fractal parametric-homogeneous functions. Fractals 2, 311–314.

    MATH  MathSciNet  Google Scholar 

  • Borodich, F.M. (1997a). Some fractal models of fracture. Journal of Mechanics and Physics of Solids 45, 239–259.

    Article  MATH  ADS  Google Scholar 

  • Borodich, F.M. (1997b). Scaling of microcrack patterns and crack propagation. In: Fractal Frontiers (Edited by M.M. Novak and T.G. Dewey), World Scientific, Singapore, 235–243.

    Google Scholar 

  • Borodich, F.M. (1997c). Non-classical scaling of microcrack patterns and crack propagation. In: Multiple Scale Analyses and Coupled Physical Systems (Saint-Venant Symposium, August 28th–29th, 1997), Presses de l'école nationale des Ponts et Chaussées, Paris, 493–500.

    Google Scholar 

  • Borodich, F.M. (1997d). Parametric-homogeneity and self-similar phenomena. Nonlinear Analysis 30, 409–418.

    Article  MATH  MathSciNet  Google Scholar 

  • Borodich, F.M. (1998a). Self-similar models of multiple fracture and size effect. Centre de Recerca Matemàtica Bellaterra, Barcelona, Preprint núm. 380, 1–31.

    Google Scholar 

  • Borodich, F.M. (1998b). Parametric-homogeneity and non-classical self-similarity. I. Mathematical background. Acta Mechanica 131, 27–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Borodich, F.M. and Onishchenko, D.A. (1999). Similarity and fractality in the modelling of roughness by multilevel profile with hierarchical structure. International Journal of Solids and Structures 36, 2585–2612.

    Article  MATH  MathSciNet  Google Scholar 

  • Borodich, F.M. and Volovikov, A.Yu. (1997). Continuity of Surface Integrals for Domains with Fractal Boundaries. Technical Report TR/MAT/FMB-AYV/97–80, Glasgow Caledonian University, Glasgow, 1–18.

    Google Scholar 

  • Botvina, L.R., Ioffe, A.V. and Tetyueva, T.V. (1997). Effect of the zone of plastic deformation on the fractal properties of a fracture surface. Metal Science of Heat Treatment 39, 296–300.

    Google Scholar 

  • Bouchaud, E., Lapasset, G. and Planès, J. (1990). Fractal dimension of fractured surfaces: a universal value? Europhys. Lett. 13, 73–79.

    ADS  Google Scholar 

  • Brady, B.T. (1974). Theory of earthquakes. I. A scale independent theory of rock failure. Pageoph 112, 701–725.

    Article  Google Scholar 

  • Brameshuber, W. and Hilsdorf, H.K. (1990). Influence of ligament length and stress state on fracture energy of concrete. Engineering Fracture Mechanics 35, 95–106.

    Article  Google Scholar 

  • Brown, S.R. (1995). Simple mathematical model of rough fracture. Journal of Geophysical Research 100(B4), 5941–5952.

    Article  ADS  Google Scholar 

  • Carpinteri, A. (1994). Scaling laws and renormalization groups for strength and toughness of disordered materials. International Journal of Solids and Structures 31, 291–302.

    Article  MATH  Google Scholar 

  • Carpinteri, A. and Chiaia, B. (1996). Crack-resistance behavior as a consequence of self-similar fracture topologies. International Journal of Fracture 76, 327–340.

    Google Scholar 

  • Chelidze, T., Reuschlé, T. and Guéguen, Y. (1994). A theoretical investigation of the fracture energy of heterogeneous brittle materials. Journal of Physics: Condens. Matter. 6, 1857–1868.

    Article  ADS  Google Scholar 

  • Cherepanov, G.P., Balankin, A.S. and Ivanova, V.S. (1995). Fractal fracture mechanics — a review. Engineering Fracture Mechanics 51, 997–1033.

    Article  Google Scholar 

  • Cotterell, B. and Mai, Y.-W. (1996). Fracture Mechanics of Cementitious Materials. Blackie Academic and Professional, London.

    Google Scholar 

  • Dauskardt, R.H., Haubensak, F. and Ritchie, R.O. (1990). On the interpretation of the fractal character of fracture surfaces. Acta Metallurgica et Materialia 38, 143–159.

    Article  Google Scholar 

  • Falconer, K.J. (1990). Fractal Geometry: Mathematical Foundations and Applications. John Wiley, Chichester.

    MATH  Google Scholar 

  • Goldshtein, R.V. and Mosolov, A.B. (1991). Cracks with fractal surface. Doklady Akademii Nauk (Russia) 319, 840–844. (English transl. in: Sov. Phys. Dokl. 36(8), 603–605).

    MATH  MathSciNet  Google Scholar 

  • Goldshtein, R.V. and Mosolov, A.B. (1992). Fractal cracks. Journal of Applied Mathematics and Mechanics (PMM) 56, 563–571.

    Article  MATH  MathSciNet  Google Scholar 

  • Gettu, R. and Shah, S.P. (1994). Fracture mechanics. In: High Performance Concretes and Applications (Edited by S.P. Shah and S.H. Ahmad), Edward Arnold, London, 161–212.

    Google Scholar 

  • Hansen, A., Hinrichsen, E.L. and Roux, S. (1991). Roughness of crack interfaces. Phys. Rev. Lett. 66, 2476–2479.

    Article  ADS  Google Scholar 

  • Herrmann, H.J., Hansen, A. and Roux S. (1989). Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. 39B, 637–648.

    ADS  Google Scholar 

  • Huang, J., Wang, Z. and Zhao, Y. (1993). The development of rock fracture from microfracturing to main fracture formation. International Journal of Rock Mechanics and Mining Sciences 30, 925–928.

    Article  Google Scholar 

  • Ikeshoji, T. and Shioya, T. (1997). Fractal dimension of fracture surfaces in ductile-brittle transition regime. In: Fractal Frontiers (Edited by M.M. Novak and T.G. Dewey), World Scientific, Singapore, 255–263.

    Google Scholar 

  • Issa, M.A., Hammad, A.M., Chudnovsky, A. (1993). Correlation between crack tortuosity and fracture-toughness in cementitious material. International Journal of Fracture 60, 97–105.

    Article  ADS  Google Scholar 

  • Louis, E., Guinea, F. and Flores, F. (1986). The fractal nature of fracture. In: Fractals in Physics (Edited by L. Pietronero and E. Tosatti), Elsevier North-Holland, Amsterdam, 177–180.

    Google Scholar 

  • Louis, E. and Guinea, F. (1989). Fracture as a growth-process. Physica D 38, 235–241.

    Article  ADS  Google Scholar 

  • Lung, C.W. (1986). Fractals and the fracture of cracked metals. In: Fractals in Physics (Edited by L. Pietronero and E. Tosatti), Elsevier North-Holland, Amsterdam, 189–192.

    Google Scholar 

  • Nolen-Hoeksema, R.C. and Gordon, R.B. (1987). Optical detection of crack patterns in the opening-mode fracture of marble. International Journal of Rock Mechanics and Mining Sciences 24, 135–144.

    Google Scholar 

  • Malcai, O., Lidar, D.A., Biham, O. and Avnir, D. (1997). Scaling range and cutoffs in empirical fractals. Phys. Rev. E 56, 2817–2828.

    Article  ADS  Google Scholar 

  • Måløy, K.J., Hansen, A., Hinrichsen, E.L. and Roux, S. (1992). Experimental measurements of the roughness of brittle cracks. Phys. Rev. Lett. 68, 2266–2269.

    Article  Google Scholar 

  • Måløy, K.J., Hansen, A., Hinrichsen, E.L. and Roux, S. (1993). Reply. Phys. Rev. Lett. 71, 205.

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B. (1977). Fractals: Form, Chance, and Dimension. W.H. Freeman, San Francisco.

    MATH  Google Scholar 

  • Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. New York, W.H. Freeman.

    Google Scholar 

  • Mandelbrot, B.B., Passoja, D.E. and Paullay, A.J. (1984). Fractal character of fracture surfaces of metals. Nature 308, 721–722.

    Article  ADS  Google Scholar 

  • Mecholsky, J.J., Passoja, D.E. and Feinberg-Ringel, K.S. (1989). Quantitative analysis of brittle fracture profiles using fractal geometry. J. Amer. Ceram. Soc. 72, 60–65.

    Article  Google Scholar 

  • Meisner, M.J. and Frantziskonis, G.N. (1997). Heterogeneous materials — scaling phenomena relevant to fracture and to fracture toughness. Chaos, Solitons and Fractals 8, 151–170.

    Article  MATH  Google Scholar 

  • Milman, V.Y., Stelmashenko, N.A. and Blumenfeld, R. (1994). Fracture surfaces: a critical-review of fractal studies and novel morphological analysis of scanning tunneling microscopy measurements. Progress in Mater. Sci. 38, 425–474.

    Article  Google Scholar 

  • Milman, V.Y., Blumenfeld, R., Stelmashenko, N.A. and Ball, R.C. (1993). Comment on Experimental measurements of the roughness of brittle cracks. Phys. Rev. Lett. 71, 204.

    Article  ADS  Google Scholar 

  • Modenov, P.S. and Parkhomenko, A.S. (1965). Geometric Transformations. Vol. 1. Euclidean and Affine Transformations. Academic Press, New York.

    MATH  Google Scholar 

  • Mosolov, A.B. (1991a). Fractal Griffith fracture. Zhurn. Tekhn. Fiziki 61, 57–60 (English transl. in: Sov. Phys.-Tech. Phys.).

    Google Scholar 

  • Mosolov, A.B. (1991b). Fractal J-integral under the destruction. Pis'ma v Zhurn. Tekhn. Fiziki 17, 45–50 (English transl. in: Tech. Phys. Lett.).

    ADS  Google Scholar 

  • Mosolov, A.B. (1993). Mechanics of fractal cracks in brittle solids. Europhys. Lett. 24, 673–678.

    ADS  Google Scholar 

  • Mosolov, A.B. and Borodich, F.M. (1992). Fractal fracture of brittle bodies during compression. Dokl. Akad. Nauk (Russia) 324, 546–549 (English transl. in: Soviet Phys. Dokl. 37, 263–265).

    MathSciNet  Google Scholar 

  • Pontrjagin, L. and Schnirelmann, L. (1932). Sur une propriété métrique de la dimension. Annals of Mathematics 33, 156–162.

    Article  MATH  MathSciNet  Google Scholar 

  • Saouma, V.E. and Barton, C.C. (1994). Fractals, fractures, and size effects in concrete. Journal of Engineering Mechanics 120(4), 835–854.

    Article  Google Scholar 

  • Saouma, V.E., Barton, C.C. and Gamaleldin, N.A. (1990). Fractal characterization of fracture surfaces in concrete. Engineering Fracture Mechanics 35, 47–53.

    Article  Google Scholar 

  • Sayles, R.S. and Thomas, T.R. (1978). Surface topography as a nonstationary random process. Nature 271, 431–434.

    Article  ADS  Google Scholar 

  • Schmittbuhl, J., Schmitt, F. and Scholz, C. (1995). Scaling invariance of crack surfaces. J. Geophys. Res. 100(B4), 5953–5973.

    Article  ADS  Google Scholar 

  • Sornette, A., Davy, P. and Sornette, D. (1990). Growth of fractal fault patterns. Phys. Rev. Lett. 65, 2266–2269.

    Article  ADS  Google Scholar 

  • Tzschichholz, F. and Pfuff, M. (1991). Influence of crackpath-roughness on crack resistance in brittle materials. In: Fracture processes in concrete, rock and ceramics. Vol. 1–2, Ch. 85 (Edited by J.G.M. Van Mier, J.G. Roth and A. Bakker), Cambridge University Press, Cambridge, 251–260.

    Google Scholar 

  • Tricot, C. (1995). Curves and Fractal Dimension. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Tricot, C., Ferland P. and Baran, G. (1994). Fractal analysis of worn surfaces. Wear 172, 127–133.

    Article  Google Scholar 

  • Vandembroucq, D and Roux, S. (1997a). Conformal mapping on rough boundaries. 1. Applications to harmonic problems. Phys. Rev. E 55(5B), 6171–6185.

    Article  MathSciNet  ADS  Google Scholar 

  • Vandembroucq, D and Roux, S. (1997b). Mode III stress intensity factor ahead of a rough crack. Journal of Mechanics and Physics of Solids 45, 853–872.

    Article  MATH  ADS  Google Scholar 

  • Willis, J.R. (1967). A comparison of the fracture criteria of Griffith and Barenblatt. Journal of Mechanics and Physics of Solids 15, 151–162.

    Article  ADS  Google Scholar 

  • Xie, H., Wang, J. and Qan, P. (1996). Fractal characteristics of micropore evolution in marbles. Phys. Lett. A 218, 275–280.

    Article  ADS  Google Scholar 

  • Xie, H., Wang, J. and Stein, E. (1998). Direct fractal measurement and multifractal properties of fracture surfaces. Phys. Lett. A 242, 41–50.

    Article  ADS  Google Scholar 

  • Zhao, Y., Huang, J. and Wang, R. (1993). Fractal characteristics of mesofractures in compressed rock specimens. International Journal of Rock Mechanics and Minerals of Sciences 30, 877–882.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodich, F.M. Fractals and fractal scaling in fracture mechanics. International Journal of Fracture 95, 239–259 (1999). https://doi.org/10.1023/A:1018660604078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018660604078

Navigation