Skip to main content
Log in

Thermostating by Deterministic Scattering: The Periodic Lorentz Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a novel mechanism for thermalizing a system of particles in equilibrium and nonequilibrium situations, based on specifically modeling energy transfer at the boundaries via a microscopic collision process. We apply our method to the periodic Lorentz gas, where a point particle moves diffusively through an ensemble of hard disks arranged on a triangular lattice. First, collision rules are defined for this system in thermal equilibrium. They determine the velocity of the moving particle such that the system is deterministic, time-reversible, and microcanonical. These collision rules can systematically be adapted to the case where one associates arbitrarily many degrees of freedom to the disk, which here acts as a boundary. Subsequently, the system is investigated in nonequilibrium situations by applying an external field. We show that in the limit where the disk is endowed by infinitely many degrees of freedom it acts as a thermal reservoir yielding a well-defined nonequilibrium steady state. The characteristic properties of this state, as obtained from computer simulations, are finally compared to those of the so-called Gaussian thermostated driven Lorentz gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Haile and S. Gupta, J. Chem. Phys. 79:3067 (1983).

    Google Scholar 

  2. M. D. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  3. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  4. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  5. G. P. Morriss and C. P. Dettmann, Chaos 8:321 (1998).

    Google Scholar 

  6. W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. 48:1818 (1982).

    Google Scholar 

  7. D. J. Evans, J. Chem. Phys. 78:3297 (1983).

    Google Scholar 

  8. D. J. Evans et al., Phys. Rev. A 28:1016 (1983).

    Google Scholar 

  9. S. Nosé, Mol. Phys. 52:255 (1984).

    Google Scholar 

  10. S. Nosé, J. Chem. Phys. 81:511 (1984).

    Google Scholar 

  11. W. G. Hoover, Phys. Rev. A 31:1695 (1985).

    Google Scholar 

  12. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 19:633 (1978).

    Google Scholar 

  13. S. Goldstein, C. Kipnis, and N. Ianiro, J. Stat. Phys. 41:915 (1985).

    Google Scholar 

  14. R. Klages, K. Rateitschak, and G. Nicolis, Phys. Rev. Lett. 84:4268 (2000).

    Google Scholar 

  15. D. J. Evans and B. L. Holian, Phys. Rev. A 83:4069 (1985).

    Google Scholar 

  16. B. Moran and W. G. Hoover, J. Stat. Phys. 48:709 (1987).

    Google Scholar 

  17. B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett. 59:10 (1987).

    Google Scholar 

  18. W. G. Hoover, Phys. Rev. A 37:252 (1988).

    Google Scholar 

  19. W. G. Hoover, Time Reversibility, Computer Simulation, and Chaos (World Scientific, Singapore, 1999).

    Google Scholar 

  20. G. P. Morriss, Phys. Lett. A 122:236 (1987).

    Google Scholar 

  21. W. G. Hoover and B. Moran, Phys. Rev. A 40:5319 (1989).

    Google Scholar 

  22. G. P. Morriss, Phys. Rev. A 39:4811 (1989).

    Google Scholar 

  23. W. G. Hoover and H. A. Posch, Chaos 8:366 (1998).

    Google Scholar 

  24. H. A. Posch and W. G. Hoover, Phys. Lett. A 123:227 (1987).

    Google Scholar 

  25. H. A. Posch and W. G. Hoover, Phys. Rev. A 38:473 (1988).

    Google Scholar 

  26. H. A. Posch and W. G. Hoover, Phys. Rev. A 39:2175 (1989).

    Google Scholar 

  27. N. L. Chernov, C. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Phys. Rev. Lett. 70:2209 (1993).

    Google Scholar 

  28. N. L. Chernov, C. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Comm. Math. Phys. 154:569 (1993).

    Google Scholar 

  29. J. Vollmer, T. Té l, and W. Breymann, Phys. Rev. Lett. 79:2759 (1997).

    Google Scholar 

  30. N. I. Chernov and J. L. Lebowitz, J. Stat. Phys. 86:953 (1997).

    Google Scholar 

  31. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995).

    Google Scholar 

  32. D. Ruelle, J. Stat. Phys. 85:1 (1996).

    Google Scholar 

  33. D. J. Evans, E. G. D. Cohen, and G. P. Morris, Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  34. W. N. Vance, Phys. Rev. Lett. 69:1356 (1992).

    Google Scholar 

  35. A. Baranyai, D. J. Evans, and E. G. D. Cohen, J. Stat. Phys. 70:1085 (1993).

    Google Scholar 

  36. C. Dellago, L. Glatz, and H. A. Posch, Phys. Rev. E 52:4817 (1995).

    Google Scholar 

  37. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  38. T. Tél, P. Gaspard, and G. Nicolis, eds., Chaos and Irreversibility, Chaos, Vol. 8 (American Institute of Physics, College Park, 1998).

    Google Scholar 

  39. M. Mareschal and B. L. Holian, eds., Microscopic Simulations of Complex Hydrodynamic Phenomena, NATO ASI Series B: Physics, Vol. 292 (Plenum Press, New York, 1992).

    Google Scholar 

  40. M. Mareschal, ed., The Microscopic Approach to Complexity in Non-Equilibrium Molecular Simulations, Physica A, Vol. 240 (Elsevier, Amsterdam, 1997).

    Google Scholar 

  41. W. G. Hoover et al., Phys. Lett. A 133:114 (1988).

    Google Scholar 

  42. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 54:2495 (1996).

    Google Scholar 

  43. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 55:3693 (1997).

    Google Scholar 

  44. P. Choquard, Chaos 8:350 (1998).

    Google Scholar 

  45. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  46. H. A. Lorentz, Proc. Amst. Acad. 438 (1905).

  47. L. A. Bunimovich and Y. G. Sinai, Commun. Math. Phys. 78:479 (1981).

    Google Scholar 

  48. J. Lloyd, L. Rondoni, and G. P. Morriss, Phys. Rev. E 50:3416 (1994).

    Google Scholar 

  49. J. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morriss, Chaos 5:536 (1995).

    Google Scholar 

  50. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 54:4782 (1996).

    Google Scholar 

  51. C. P. Dettmann and G. P. Morriss, Phys. Rev. Lett. 78:4201 (1997).

    Google Scholar 

  52. K. Rateitschak and R. Klages, unpublished.

  53. J. C. Maxwell, Cam. Phil. Trans. 12:547 (1879).

    Google Scholar 

  54. L. Boltzmann, in Wissenschaftliche Abhandlungen von L. Boltzmann, F. Hasenö hrl, ed. (J. A. Barth Verlag, Leipzig, 1909), Vol. 2, Chap. 63.

    Google Scholar 

  55. L. J. Milanović, H. A. Posch, and W. Thirring, Phys. Rev. E 57:2763 (1998).

    Google Scholar 

  56. C. Wagner, R. Klages, and G. Nicolis, Phys. Rev. E 60:1401 (1999).

    Google Scholar 

  57. N. van Kampen, Physica Norvegica 5:279 (1971).

    Google Scholar 

  58. R. Klages and J. Groeneveld, Verhandl. DPG VI:646 (1998).

    Google Scholar 

  59. R. Klages, Verhandl. DPG VI:678 (1999).

    Google Scholar 

  60. R. Klages, unpublished.

  61. G. L. Eyink and J. L. Lebowitz, p. 323 in ref. 39.

  62. W. G. Hoover and H. A. Posch, Phys. Lett. A 246:247 (1998).

    Google Scholar 

  63. K. Rateitschak, R. Klages, and W. G. Hoover, e-print chao-dyn/9912018.

  64. C. Dellago and H. A. Posch, Phys. Rev. E 52:2401 (1995).

    Google Scholar 

  65. C. Dellago, H. A. Posch, and W. G. Hoover, Phys. Rev. E 53:1485 (1996).

    Google Scholar 

  66. N. Brillantov, F. Spahn, J.-M. Hertzsch, and T. Pö schel, Phys. Rev. E 53:5382 (1996).

    Google Scholar 

  67. T. Aspelmeier, G. Giese, and A. Zippelius, Phys. Rev. E 57:857 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rateitschak, K., Klages, R. & Nicolis, G. Thermostating by Deterministic Scattering: The Periodic Lorentz Gas. Journal of Statistical Physics 99, 1339–1364 (2000). https://doi.org/10.1023/A:1018645007533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018645007533

Navigation