Skip to main content
Log in

Monte Carlo Transition Dynamics and Variance Reduction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For Metropolis Monte Carlo simulations in statistical physics, efficient, easy- to-implement, and unbiased statistical estimators of thermodynamic properties are based on the transition dynamics. Using an Ising model example, we demonstrate (problem-specific) variance reductions compared to conventional histogram estimators. A proof of variance reduction in a microstate limit is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 22:1087–1092 (1953).

    Google Scholar 

  2. M. Fitzgerald, R. R. Picard, and R. N. Silver, Canonical transition probabilities for adaptive Metropolis simulation, Europhys. Lett. 46:282–287 (1999).

    Google Scholar 

  3. S. Chib and E. Greenberg, Understanding the Metropolis-Hastings algorithm, American Statistician 49:327–335 (1995).

    Google Scholar 

  4. A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Statistical errors in histogram reweighting, Phys. Rev. E 51:5092–5100 (1995).

    Google Scholar 

  5. G. R. Smith and A. D. Bruce, A study of the multicanonical Monte Carlo method, J. Phys. A: Math. Gen. 28:6623–6643 (1995).

    Google Scholar 

  6. E. Anderson et al., SIAM (1994). [http://www.netlib.org/lapack/lug/lapack/lug.html].

  7. J. S. Wang, T. K. Tay, and R. H. Swendsen, Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82:476–479 (1999).

    Google Scholar 

  8. P. M. C. de Oliveira, T. J. P. Penna, and H. J. Herrmann, Broad histogram Monte Carlo, Eur. Phys. J. B 1:205–208 (1998).

    Google Scholar 

  9. P. D. Beale, Exact distribution of energies in the two-dimensional Ising model, Phys. Rev. Lett. 76:78–81 (1996).

    Google Scholar 

  10. B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68:9–12 (1992).

    Google Scholar 

  11. W. Feller, An Introduction to Probability Theory and Its Application, Vols. 1 and 2 (Wiley, New York, 1971).

    Google Scholar 

  12. P. H. Peskun, Optimum Monte Carlo sampling using Markov chains, Biometrika 60:607–612 (1973).

    Google Scholar 

  13. V. I. Romanovsky, Discrete Markov Chains (Wolters-Noordhoff, Groningen, Netherlands, 1970).

    Google Scholar 

  14. C. R. Rao, Linear Statistical Inference and Its Applications (Wiley, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, M., Picard, R.R. & Silver, R.N. Monte Carlo Transition Dynamics and Variance Reduction. Journal of Statistical Physics 98, 321–345 (2000). https://doi.org/10.1023/A:1018635108073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018635108073

Navigation