Skip to main content
Log in

Analysis of the activation energy spectrum for the enthalpy relaxation of a glassy liquid crystalline polymer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phenomenology of the physical ageing of glassy materials can be described by using the activation energy spectrum model. This model was originally developed for relaxations in metallic and oxide glasses and this paper applies it to a liquid crystalline polymer, poly(diethylene glycol p, p′-bibenzoate) (PDEB), in the glassy state.

PDEB samples were quenched from above Tg and isothermally annealed in a differential scanning calorimetry (DSC) equipment, and a description of the enthalpy relaxation of PDEB was achieved by means of the Kohlrausch–Williams–Watts (KWW) equation. The results show that the relaxation time decreases when the annealing temperature increases and can be explained in terms of an Arrhenius-type equation. The predicted value for the apparent activation enthalpy (0.98 eV) is lower than those reported for other polymers. This approach assumes that a unique elemental process with a relaxation time τ0=1.3×10-13 min controls the evolution of the system.

Energy spectra demonstrate that the activation energy values for the mechanisms controlling the relaxation are lower than 1.1 eV and the spectra present a maximum for an activation energy close to 0.98 eV. The total number of available relaxation processes (measured by the area below the curves) decreases if the sub-Tg annealing temperature increases. Moreover, the results show that the distributions widen if the shape parameter of the KWW equation decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. E. STRUIK, “Physical aging in amorphous polymers and other materials” (Elsevier, Amsterdam, 1978).

    Google Scholar 

  2. J. ZARZYCKI (ed.) “Materials science and technology, Vol. 9, Glasses and amorphous materials”, (VCH, Weinheim, 1991).

    Google Scholar 

  3. M. R. TANT and G. L. WILKES,Polym. Eng. Sci. 21 (1981) 874.

    Google Scholar 

  4. G. B. McKENNA in “Comprehensive polymer science, Vol. 2, polymer properties”, edited by C. Booth and C. Price (Pergamon, Oxford, 1990) p. 311.

    Google Scholar 

  5. G. W. SCHERER,J. Non-Cryst. Solids 123 (1990) 75.

    Google Scholar 

  6. J. COLMENERO and A. ALEGRÍA (eds) “Basic features of the glassy state” (World Scientific, Singapore, 1990).

    Google Scholar 

  7. K. L. NGAI and G. B. WRIGHT (eds) “Relaxations in complex systems”,J. Non-Cryst. Solids 131–133 (1991) (Elsevier, North-Holland, Amsterdam, 1991).

  8. A. CONDE, C. F. CONDE and M. MILLÁN (eds) ”Trends in non-crystalline solids” (World Scientific, Singapore, 1992).

    Google Scholar 

  9. K. L. NGAI, E. RIANDE and G. B. WRIGHT, “Relaxations in complex systems 2”. J. Non-Cryst. Solids 172–174 (1994).

  10. A. J. KOVACS, J. J. AKLONIS, J. M. HUTCHINSON and A. RAMOS,J. Polym. Sci.: Polym. Phys. Edn. 17 (1979) 1097.

    Google Scholar 

  11. R. W. RENDELL, J. J. AKLONIS, K. L. NAGI and G. R. FONG,Macromolecules 20 (1987) 1070.

    Google Scholar 

  12. M. R. J. GIBBS, J. E. EVETTS and J. A. LEAKE,J. Mater. Sci. 18 (1983) 278.

    Google Scholar 

  13. E. PÉREZ, R. BENAVENTE, M. M. MARUGÁN, A. BELLO and J. M. PEREÑA,Polym. Bull. 25 (1991) 413.

    Google Scholar 

  14. J. WATANABE and M. HAYASHI,Macromolecules 21 (1988) 278.

    Google Scholar 

  15. E. PÉREZ, A. BELLO, M. M. MARUGÁN and J. M. PEREÑA,Polym. Commun. 31 (1990) 386.

    Google Scholar 

  16. E. PÉREZ, E. RIANDE, A. BELLO, R. BENAVENTE and J. M. PEREÑA,Macromolecules 25 (1992) 605.

    Google Scholar 

  17. A. BELLO, E. RIANDE, E. PÉREZ, M. M. MARUGÁN and J. M. PEREÑA,ibid. 26 (1993) 1072.

    Google Scholar 

  18. E. PÉREZ, J. M. PEREÑA, R. BENAVENTE, A. BELLO and V. LORENZO,Polym. Bull. 29 (1992) 233.

    Google Scholar 

  19. M. T. CLAVAGUERA-MORA, M. D. BARÓ, S. SURIÑACH, J. SAURINA and N. CLAVAGUERA, in “Basic features of the glassy state”, edited by J. Colmenero and A. Alegría (World Scientific, Singapore, 1990) p. 360.

    Google Scholar 

  20. M. T. CLAVAGUERA-MORA, M. D. BARÓ, S. SURIÑACH, J. SAURINA and N. CLAVAGUERA, in “Relaxations in complex systems”, edited by K. L. Ngai and G. B. Wright (Elsevier, North-Holland, Amsterdam, 1991) p. 479.

    Google Scholar 

  21. J. D. FERRY, “Viscoelastic properties of polymers” (John Wiley & Sons, New York, 1980) p. 82.

    Google Scholar 

  22. S. E. B. PETRIE,J. Polym. Sci. A2 10 (1972) 1255.

    Google Scholar 

  23. F. L. CUMBRERA, F. SÁNCHEZ-BAJO, F. GUIBERTEAU, J. D. SOLIER and A. MUÑOZ,J. Mater. Sci. 28 (1993) 5387.

    Google Scholar 

  24. G. WILLIAMS, in “Relaxations in complex systems”, edited by K. L. Ngai and G. B. Wright (Elsevier North-Holland, Amsterdam, 1991) p. 1.

    Google Scholar 

  25. S. MONSERRAT and P. CORTÉS,Makromol. Chem., Macromol. Symposia 20–21 (1988) 389.

    Google Scholar 

  26. A. MUÑOZ, F. L. CUMBRERA and R. MÁRQUEZ,Mater. Chem. Phys. 21 (1989) 279.

    Google Scholar 

  27. A. ORMAZÁBAL, V. LORENZO, R. BENAVENTE, E. PÉREZ, A. BELLO and J. M. PEREÑA, in “Nano-structured and non-crystalline materials”, edited by M. Vázquez and A. Hernando (World Scientific, Singapore, 1995) p. 202.

    Google Scholar 

  28. A. ALEGRÍA, L. GOITIANDIA, I. TELLERÍA and J. COLMENERO in “Basic features of the glassy state”, edited by J. Colmenero and A. Alegría (World Scientific, Singapore, 1990) p. 245.

    Google Scholar 

  29. K. L. NGAI, in “Basic features of the glassy state”, edited by J. Colmenero and A. Alegria (World Scientific, Singapore, 1990) p. 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LORENZO, V., PERENA, J.M., PEREZ, E. et al. Analysis of the activation energy spectrum for the enthalpy relaxation of a glassy liquid crystalline polymer. Journal of Materials Science 32, 3601–3605 (1997). https://doi.org/10.1023/A:1018622228143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018622228143

Keywords

Navigation