Skip to main content
Log in

Long-Time-Tail Effects on Lyapunov Exponents of a Random, Two-Dimensional Field-Driven Lorentz Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the Lyapunov exponents for a moving, charged particle in a two-dimensional Lorentz gas with randomly placed, nonoverlapping hard-disk scatterers in a thermostatted electric field, \(\vec E\). The low-density values of the Lyapunov exponents have been calculated with the use of an extended Lorentz–Boltzmann equation. In this paper we develop a method to extend theses results to higher density, using the BBGKY hierarchy equations and extending them to include the additional variables needed for calculation of the Lyapunov exponents. We then consider the effects of correlated collision sequences, due to the so-called ring events, on the Lyapunov exponents. For small values of the applied electric field, the ring terms lead to nonanalytic, field-dependent contributions to both the positive and negative Lyapunov exponents which are of the form 2ln, where is a dimensionless parameter proportional to the strength of the applied field. We show that these nonanalytic terms can be understood as resulting from the change in the collision frequency from its equilibrium value due to the presence of the thermostatted field, and that the collision frequency also contains such nonanalytic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Evans and G. P. Morriss, Statistical Mechanics of Non-equilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  2. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd, Nonequilibrium molecular dynamics via Gauss's principle of least constraint, Phys. Rev. A 28:1016 (1983).

    Google Scholar 

  3. D. J. Evans, Computer “experiment” for nonlinear thermodynamics of Couette flow, J. Chem. Phys. 78:3297 (1983).

    Google Scholar 

  4. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G Sinai, Steady-state electrical conduction in periodic Lorentz gas, Comm. Math. Phys. 154:569 (1993).

    Google Scholar 

  5. C. Dettmann, The Lorentz gas: A paradigm for non-equilibrium stationary states, preprint.

  6. H. van Beijeren and J. R. Dorfman, Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities, Phys. Rev. Lett. 74:4412 (1995).

    Google Scholar 

  7. H. van Beijeren, A. Latz, and J. R. Dorfman, Chaotic properties of dilute two-and three-dimensional random Lorentz gases: Equilibrium systems, Phys. Rev. E 57:4077 (1998).

    Google Scholar 

  8. H. van Beijeren, J. R. Dorfman, E. G. D. Cohen, H. A. Posch, and Ch. Dellago, Lyapunov exponents from kinetic theory for a dilute, field-driven Lorentz gas, Phys. Rev. Lett. 77:1974 (1996).

    Google Scholar 

  9. A. Latz, H. van Beijeren, and J. R. Dorfman, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Kinetic theory, Phys. Rev. Lett. 78:207 (1997).

    Google Scholar 

  10. J. R. Dorfman and H. van Beijeren, Statistical Mechanics, Part B. Time-Dependent Processes, Bruce H. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  11. M. H. Ernst and A. Weijland, Long time behaviour of the velocity auto-correlation function in a Lorentz gas, Phys. Lett. 34A:39 (1971).

    Google Scholar 

  12. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing Billiards, Russ. Math. Surv. 25:137 (1970).

    Google Scholar 

  13. Z. Kovács, private discussion.

  14. Z. Kovács, Orbit stability in billiards in magnetic field, Phys. Rep. 290:49 (1997).

    Google Scholar 

  15. W. G. Hoover, Computational Statistical Mechanics (Elsevier Science Publishers, Amsterdam, 1991).

    Google Scholar 

  16. D. Panja, An elementary proof of Lyapunov exponent pairing for hard-sphere systems at constant kinetic energy, preprint.

  17. J. R. Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics (Cambridge Univ. Press, 1999).

  18. D. Panja and J. R. Dorfman, unpublished.

  19. J. R. Dorfman and M. H. Ernst, Hard-sphere binary collision operators, J. Stat. Phys. 57:581 (1989). See also M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen, Hard-sphere dynamics and binary-collision operators, Physica 45:127 (1969).

    Google Scholar 

  20. J. M. J. van Leeuwen and A. Weijland, Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas, Physica 36:457 (1967). See also C. Bruin, A computer experiment on diffusion in the Lorentz gas, Physica 72:261 (1974).

    Google Scholar 

  21. M. H. Ernst and J. R. Dorfman, Nonanalytic dispersion relations in classical fluids. I. The hard sphere gas, Physica 61:157 (1972).

    Google Scholar 

  22. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1970).

  23. H. Kruis, Masters thesis, University of Utrecht, The Netherlands (1997).

    Google Scholar 

  24. J. R. Dorfman, A. Latz, and H. van Beijeren, Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy methods for sums of Lyapunov exponents for Dilute gases, Chaos 8:444 (1998).

    Google Scholar 

  25. H. A. Posch and Ch. Dellago, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Numerical simulations, Phys. Rev. Lett. 78:211 (1997).

    Google Scholar 

  26. A. Latz, H. van Beijeren, and J. R. Dorfman, Chaotic properties of dilute two-and three-dimensional random Lorentz gases II: Open systems, preprint.

  27. D. Panja, Ph.D. thesis, University of Maryland, College Park, USA (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panja, D., Dorfman, J.R. & van Beijeren, H. Long-Time-Tail Effects on Lyapunov Exponents of a Random, Two-Dimensional Field-Driven Lorentz Gas. Journal of Statistical Physics 100, 279–311 (2000). https://doi.org/10.1023/A:1018604115227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018604115227

Navigation