Skip to main content
Log in

Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study the comparative TLC immunostaining investigation of neutral GSLs and gangliosides from human skeletal and heart muscle is described. A panel of specific polyclonal and monoclonal antibodies as well as the GM1-specific choleragenoid were used for the overlay assays, combined with preceding neuraminidase treatment of gangliosides on TLC plates. This approach proved homologies but also quantitative and qualitative differences in the expression of ganglio-, globo- and neolacto-series neutral GSLs and gangliosides in these two types of striated muscle tissue within the same species. The main neutral GSL in skeletal muscle was LacCer, followed by GbOse3Cer, GbOse4Cer, nLcOse4Cer and monohexosylceramide, whereas in heart muscle GbOse3Cer and GbOse4Cer were the predominant neutral GSLs beside small quantities of LacCer, nLcOse4Cer and monohexosylceramide. No ganglio-series neutral GSLs and no Forssman GSL were found in either muscle tissue. GM3(Neu5Ac) was the major ganglioside, comprising almost 70% in skeletal and about 50% in cardiac muscle total gangliosides. GM2 was found in skeletal muscle only, while GD3 and GM1b-type gangliosides (GM1b and GD1α) were undetectable in both tissues. GM1a-core gangliosides (GM1, GD1a, GD1b and GT1b) showed somewhat quantitative differences in each muscle; lactosamine-containing IV3Neu5Ac-nLcOse4Cer was detected in both specimens. Neutral GSLs were identified in TLC runs corresponding to e.g. 0.1 g muscle wet weight (GbOse3Cer, GbOse4Cer), and gangliosides GM3 and GM2 were elucidated in runs which corresponded to 0.2 g muscle tissue. Only 0.02 g and 0.004 g wet weight aliquots were necessary for unequivocal identification of neolacto-type and GM1-core gangliosides, respectively. Muscle is known for the lowest GSL concentration from all vertebrate tissues studied so far. Using the overlay technique, reliable GSL composition could be revealed, even from small muscle probes on a sub-orcinol and sub-resorcinol detection level. Abbreviations: ATCC, American Type Culture Collection; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac, N-acetylneuraminic acid; Neu5Gc, N-glycolylneuraminic acid [78]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [79] and the ganglioside nomenclature system of Svennerholm [80]. Lactosylceramide or LacCer, Galβ1-4Glcβ1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliotetraosylceramide or GgOse4Cer, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; globotriaosylceramide or GbOse3Cer, Galα1-4Galβ1-4Glcβ1-1Cer; globoside or globotetraosylceramide or GbOse4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer; Fo or Forssman GSL, GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer; paragloboside or lacto-N-neotetraosylceramide or nLcOse4Cer, Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1 or GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GD3, II3(Neu5Ac)2-LacCer; GD1a, IV3Neu5Ac,II3Neu5Ac-GgOse4Cer; GD1b, (II3Neu5Ac)2-GgOse4Cer; GD1α, IV3Neu5Ac,III6Neu5Ac-GgOse4Cer; GT1b, IV3Neu5Ac,II3(Neu5Ac)2-GgOse4Cer; GQ1b, IV3(Neu5Ac)2, II3(Neu5Ac)2-GgOse4Cer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reuter G, Schauer R (1994) Methods Enzymol 230: 168–99.

    Google Scholar 

  2. Schauer R (1988) Adv Exp Med Biol 228: 47–72.

    Google Scholar 

  3. Hakomori S-I (1981) Annu Rev Biochem 50: 733–64.

    Google Scholar 

  4. Ledeen RW, Yu RK (1982) Methods Enzymol 83: 139–91.

    Google Scholar 

  5. Marcus DM (1984) Mol Immunol 21: 1083–91.

    Google Scholar 

  6. Thompson TE, Tillack TW (1985) Annu Rev Biophys Biophys 14: 361–86.

    Google Scholar 

  7. Fukuda M (1985) Biochim Biophys Acta 780: 119–50.

    Google Scholar 

  8. Stults CLM, Sweeley CC, Macher B (1989) Methods Enzymol 179: 167–214.

    Google Scholar 

  9. Schwarzmann G, Sandhoff K (1990) Biochemistry 29: 10866–71.

    Google Scholar 

  10. Zeller CB, Marchase RB (1992) Am J Physiol 262 (Cell Physiol 31) C1341-C55.

    Google Scholar 

  11. Kojima N, Hakomori S-I (1991) Glycobiology 1: 623–30.

    Google Scholar 

  12. Igarashi Y, Nojiri H, Hanai N, Hakomori S-I (1989) Methods Enzymol 179: 521–41.

    Google Scholar 

  13. Saito M (1989) Dev Growth Differ 31: 509–22.

    Google Scholar 

  14. Hakomori S-I (1990) J Biol Chem 265: 18713–16.

    Google Scholar 

  15. Gillard BK, Thurmon LT, Marcus DM (1993) Glycobiology 3: 57–67.

    Google Scholar 

  16. Nakamura K, Ariga T, Yahagi T, Miyatake T, Suzuki A, Yamakawa T (1983) J Biochem 94: 1359–65.

    Google Scholar 

  17. Mu¬thing J, Maurer U, Šoštarić K, Neumann U, Brandt H, Duvar S, Peter-Katalinić J, Weber-Schu¬rholz S (1994) J Bio-chem 115: 248–56.

    Google Scholar 

  18. Svennerholm L, Bruce Å, Månsson J-E, Rynmark BM, Vanier MT (1972) Biochim Biophys Acta 280: 626–36.

    Google Scholar 

  19. Chien J-L, Hogan EL (1980) In Cell Surface Glycolipids (Sweeley CC, ed) pp. 135–48. NY, American Chemical Society.

    Google Scholar 

  20. Levis GM, Karli JN, Moulopoulos SD (1979) Lipids 14: 9–14.

    Google Scholar 

  21. Čačić M, Müthing J, Krachum I, Neumann U, Weber-Schu¬ r-holz S (1994) Glycoconjugate J 11: 477–85.

    Google Scholar 

  22. Karlsson K-A (1989) Annu Rev Biochem 58: 309–50.

    Google Scholar 

  23. Müthing J (1996) J Chromatogr A 720: 3–25.

    Google Scholar 

  24. Ko¬hler G, Milstein C (1976) Eur J Immunol 6: 511–19.

    Google Scholar 

  25. Feizi T (1985) Nature 314: 53–57.

    Google Scholar 

  26. Magnani J (1987) Chem. Phys. Lipids 42: 65–74.

    Google Scholar 

  27. Müthing J, Peter-Katalinić J, Hanisch F-G, Neumann U (1991) Glycoconjugate J 8: 414–23.

    Google Scholar 

  28. Ueno K, Ando S, Yu RK (1978) J Lipid Res 19: 863–71.

    Google Scholar 

  29. Saito T, Hakomori S-I (1971) J Lipid Res 12: 257–59.

    Google Scholar 

  30. Müthing J, Neumann U (1993) Biomed Chromatogr 7: 158–61.

    Google Scholar 

  31. Müthing J, Unland F, Heitmann D, Orlich M, Hanisch F-G, Peter-Katalinić J, Knäuper V, Tschesche H, Kelm S, Schauer R, Lehmann J (1993) Glycoconjugate J 10: 120–26.

    Google Scholar 

  32. Müthing J, Peter-Katalinić J, Hanisch F-G, Unland F, Lehmann J (1994) Glycoconjugate J 11: 153–62.

    Google Scholar 

  33. Skipski VP (1975) Methods Enzymol 35: 396–425.

    Google Scholar 

  34. Svennerholm L (1957) Biochim Biophys Acta 24: 604–11.

    Google Scholar 

  35. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T (1980) Eur J Immunol 10: 175–80.

    Google Scholar 

  36. Bethke U, Kniep B, Mühlradt PF (1987) J Immunol 138: 4329–35.

    Google Scholar 

  37. Young WW Jr, MacDonald EMS, Nowinski RC, Hakomori S-I (1979) J Exp Med 150: 1008–19.

    Google Scholar 

  38. Bethke U, Müthing J, Schauder B, Conradt P, Mu¬hlradt PF (1986) J Immunol Methods 89: 111–16.

    Google Scholar 

  39. Müthing J, Mühlradt PF (1988) Anal Biochem 173: 10–17.

    Google Scholar 

  40. Müthing J, Steuer H, Peter-Katalinić J, Marx U, Bethke U, Neumann U, Lehmann J (1994) J Biochem 116: 64–73.

    Google Scholar 

  41. Dippold WG, Lloyd KO, Li LTC, Ikeda H, Oettgen HF, Old LJ (1980) Proc Natl Acad Sci USA 77: 6114–18.

    Google Scholar 

  42. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Y, Koprowski H, Ginsburg V (1982) J Biol Chem 257: 14365–69.

    Google Scholar 

  43. Magnani JL, Smith DF, Ginsburg V (1980) Anal Biochem 109: 399–402.

    Google Scholar 

  44. Müthing J, Pörtner A, Jäger V (1992) Glycoconjugate J 9: 265–73.

    Google Scholar 

  45. Wu G, Ledeen RW (1988) Anal Biochem 173: 368–75.

    Google Scholar 

  46. Itonori S, Hidari K, Sanai Y, Taniguchi M, Nagai Y (1989) Glycoconjugate J 6: 551–60.

    Google Scholar 

  47. Puro K, Maury P, Huttunen K (1969) Biochim Biophys Acta 187: 230–35.

    Google Scholar 

  48. Iwamori M, Nagai Y (1981) J Biochem 89: 1253–64.

    Google Scholar 

  49. Iwamori M, Nagai Y (1978) J Biochem 84: 1609–15.

    Google Scholar 

  50. Nakamura K, Nagashima M, Sekine M, Igarashi M, Ariga T, Atsumi T, Miyatake T, Suzuki A, Yamakawa T (1983) Biochim Biophys Acta 752: 291–300.

    Google Scholar 

  51. Nakamura K, Hashimoto Y, Yamakawa T, Suzuki A (1988) J Biochem 103: 201–8.

    Google Scholar 

  52. Leskawa CL, Short CS (1988) Glycoconjugate J 5: 302.

    Google Scholar 

  53. Chien J-L, Hogan EL (1980) Biochim Biophys Acta 620: 454–61.

    Google Scholar 

  54. Ariga T, Sekine M, Nakamura K, Igarashi M, Nagashima M, Miyatake T, Suzuki M, Yamakawa T (1983) J Biochem 93: 889–93.

    Google Scholar 

  55. Chien J-L, Hogan EL (1983) J Biol Chem 258: 10727–30.

    Google Scholar 

  56. Dasgupta S, Chien J-L, Hogan EL, van Halbeek H (1991) J Lipid Res 32: 499–506.

    Google Scholar 

  57. Leskawa K C, Buse PE, Hogan EL, Garvin JL (1984) Neuro-chem Pathol 2: 19–29.

    Google Scholar 

  58. Li YT, Månsson JE, Vanier M-T, Svennerholm L (1973) J Biol Chem 248: 2634–36.

    Google Scholar 

  59. Ogawa K, Abe T, Yoshimura K, Nagashima K, Nagashima T (1985) Jpn J Exp Med 55: 123–27.

    Google Scholar 

  60. Chan K-FJ (1989) J Biol Chem 264: 18632–37.

    Google Scholar 

  61. Chan K-FJ, Liu Y (1991) Glycobiology 1: 193–203.

    Google Scholar 

  62. Hirabayashi Y, Koketsu K, Higashi H, Suzuki Y, Matsumoto M, Sugimoto M, Ogawa T (1986) Biochim Biophys Acta 876: 178–82.

    Google Scholar 

  63. Davidsson P, Fredman P, Svennerholm L (1989) J Chromatogr 496: 279–89.

    Google Scholar 

  64. Hamilton WB, Helling F, Lloyd KO, Livingston PO (1993) Int J Cancer 53: 566–73.

    Google Scholar 

  65. Partridge TA (1991) Muscle Nerve 14: 197–212.

    Google Scholar 

  66. Law PK, Bertorini TE, Goodwin TG, Chen M, Fang Q, Li H-J, Kirby DS, Florendo JA, Herrod H, Golden GS (1990) Lancet 336: 114–15.

    Google Scholar 

  67. Huard J, Bouchard JP, Roy R, Malouin F, Dansereau G, Labrecque C, Albert N, Richards CL, Lemieux B, Tremblay JP (1992) Muscle Nerve 15: 550–60.

    Google Scholar 

  68. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Nature 337: 176–79.

    Google Scholar 

  69. Barr E, Leiden JM (1991) Science 254: 1507–9.

    Google Scholar 

  70. Dhawan J, Pan LC, Pavlath GK, Travis MA, Lanctot AM, Blau HM (1991) Science 254: 1509–12.

    Google Scholar 

  71. Yao S-N, Kurachi K (1992) Proc Natl Acad Sci ºSA 89: 3357–61.

    Google Scholar 

  72. Jiao S, Gurevich V, Wolff JA (1993) Nature 362: 450–53.

    Google Scholar 

  73. Leskawa KC, Erwin RE, Buse PE, Hogan EL (1988) Mol Cell Biochem 83: 47–54.

    Google Scholar 

  74. Leskawa KC, Hogan EL (1990) Mol Cell Biochem 96: 163–73.

    Google Scholar 

  75. Cambron LD, Leskawa KC (1994) Mol Cell Biochem 130: 173–85.

    Google Scholar 

  76. Čačić M, Šoštarić K, Weber-Schu¬rholz S, Mu¬thing J (1995) Glycoconjugate J 12: 721–28.

    Google Scholar 

  77. McCurry KR, Kooyman DL, Alvarado CG, Cotterell AH, Martin MJ, Logan JS, Platt JL (1995) Nature Medicine 1: 423–27.

    Google Scholar 

  78. Reuter G, Schauer R (1988) Glycoconjugate J 5: 133–35.

    Google Scholar 

  79. IUPAC-IUB Commission on biochemical nomenclature (1977) Eur J Biochem 79: 11–21.

    Google Scholar 

  80. Svennerholm L (1963) J Neurochem 10: 613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthing, J., Cacic, M. Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconj J 14, 19–28 (1997). https://doi.org/10.1023/A:1018552729572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018552729572

Navigation