Skip to main content
Log in

The use of rat, rabbit or human bone marrow derived cells for cytocompatibility evaluation of metallic elements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Rat, rabbit and human bone marrow cells were cultured according to the method previously reported for cells of rat origin [1] and were exposed, or not (control), to corrosion products of a Co–Cr orthopaedic alloy as well as to metal salts containing Co2+, Cr3+ and Cr6+. Cells were cultured for 21 days and analysed for the following biochemical parameters: intracellular MTT reduction (i.e. cell viability/proliferation), alkaline phosphatase (ALP) activity and protein production. Morphological observations included both histochemistry (detection of ALP-positive cells, calcium and phosphate deposits) and scanning electron microscopy (SEM). Control cultures of rat and rabbit cells showed higher proliferation rates than human cells at the start of culture, but they all reached similar values on day 21. Protein production was parallel to cell proliferation. In contrast, ALP activity of rat cultures was much stronger than rabbit or human cultures. All cell types were able to develop the osteogenic phenotype in vitro.

Co–Cr extract caused inhibitory effects on cell viability, on ALP activity and, to a lower extent, on protein production of all rat, rabbit and human cell cultures. Compared to rat and rabbit cultures, human cultures were the most sensitive to metal ions exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. MANIATOPOULOS, J. SODEK and A. H. MELCHER, Cell Tissue Res. 254 (1988) 317.

    Google Scholar 

  2. A. PIZZOFERRATO, G. CIAPETTI, S. STEA, E. CENNI, C. R. ARCIOLA, D. GRANCHI and L. SAVARINO, Clin. Mater. 15 (1994) 173.

    Google Scholar 

  3. D. MASQUELIER, B. HERBERT, N. HAUSER, P. MERMILLOD, E. SCHONNE and C. REMACLE, Calcif. Tissue Int. 47 (1990) 92.

    Google Scholar 

  4. B. ZIMMERMANN, H. C. WACHTEL and C. NOPPE, Cell Tissue Res. 263 (1991) 483.

    Google Scholar 

  5. J-R. NEFFUSI, D. SEPTIER, J-M. SAUTIER, N. FOREST and M. GOLDBERG, Calcif. Tissue Int. 50 (1992) 273.

    Google Scholar 

  6. C. G. BELLOWS, J. N. M. HEERSCHE and J. E. AUBIN, Bone and Mineral 17 (1992) 15.

    Google Scholar 

  7. B. GROESSNER-SCHREIBER and R. S. TUAN, J. Cell Sci. 101 (1992) 209.

    Google Scholar 

  8. M. NAGAI, Y. SUZUKI and M. OTA, Bone 14 (1993) 655.

    Google Scholar 

  9. Y. HAYASHI and H. NAGASAWA, Calcif. Tissue Int. 47 (1990) 365.

    Google Scholar 

  10. Y. ABE, A. AKAMINE, Y. AIDA and K. MAEDA, ibid. 52 (1993) 365.

    Google Scholar 

  11. P. B. ANDREWS, A. R. TEN CATE and J. E. DAVIES, Cells and Materials 3 (1993) 67.

    Google Scholar 

  12. Y. HAYASHI, M. IMAI, Y. GOTO and N. MURAKAMI, J. Oral Pathol. Med. 22 (1993) 175.

    Google Scholar 

  13. M. BOUVIER, M. L. COUBLE, D. J. HARTMANN and H. MAGLORIE, Cell. Molec. Biol. 37 (1991) 509.

    Google Scholar 

  14. Y. GOTOH, K. HIRAIWA and M. NAGAYAMA, Bone and Mineral 8 (1990) 239.

    Google Scholar 

  15. N. ARCEO, J. J. SAUK, J. MOEHRING, R. A. FOSTER and M. J. SOMERMAN, J. Periodontal. 62 (1991) 499.

    Google Scholar 

  16. M. GREGOIRE, I. ORLY and J. MENANTEAU, J. Biomed. Mater. Res. 24 (1990) 165.

    Google Scholar 

  17. M. KASSEM, J. RUNGBY, L. MOSEKILDE and E. F. ERIKSEN, APMIS. 100 (1992) 490.

    Google Scholar 

  18. Y. KOSHIHARA, M. HIRANO, M. KAWAMURA, H. ODA and S. HIGAKI, J. Gerontol. Biol. Sci. 46 (1991) B201.

    Google Scholar 

  19. K. SATOMURA and M. NAGAYAMA, Acta Anatomica 142 (1991) 97.

    Google Scholar 

  20. F. J. HUGHES and A. G. MCCULLOCH, Lab. Invest. 64 (1991) 617.

    Google Scholar 

  21. M. KASSEM, L. RISTELI, L, MOSEKILDE, F. MELSEN and E. F. ERIKSEN, APMIS. 99 (1991) 269.

    Google Scholar 

  22. R. SCHMIDT and K. D. KULBE, Bone and Mineral 20 (1993) 211.

    Google Scholar 

  23. H. TOMÁS, A. P. FREIRE and L. M. ABRANTES, J. Mater. Sci. Mater. Med. 5 (1994) 446.

    Google Scholar 

  24. O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR and R. J. RANDALL, J. Biol. Chem. 193 (1951) 256.

    Google Scholar 

  25. C. G. BELLOWS, J. E. AUBIN and J. N. M. HEERSCHE, Bone and Mineral {vn14} (1991) 27.

    Google Scholar 

  26. X. SHEN, E. ROBERTS, S. A. F. PEEL and J. E. DAVIES, Cells and Materials 3 (1993) 257.

    Google Scholar 

  27. J. D. BRUIJN, C. P. A. T. KLEIN, K. DEGROOT and C. A. VAN BLITTERSWIJK, ibid. 3 (1993) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TOMAS , H., CARVALHO , G.S., FERNANDES , M.H. et al. The use of rat, rabbit or human bone marrow derived cells for cytocompatibility evaluation of metallic elements. Journal of Materials Science: Materials in Medicine 8, 233–238 (1997). https://doi.org/10.1023/A:1018543808210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018543808210

Keywords

Navigation