Skip to main content
Log in

Stimulatory effect of gangliosides on phagocytosis, phagosome–lysosome fusion, and intracellular signal transduction system by human polymorphonuclear leukocytes

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Gangliosides are known to be differentiation-inducing molecules in mammalian stem cells. We studied the interaction between the molecular structure of glycosphingolipids (GSLs) and their promoting mechanisms of the phagocytic processes in human polymorphonuclear leukocytes (PMN). The effect of various gangliosides from mammalian tissues on adhesion, phagocytosis, phagosome–lysosome (P–L) fusion and superoxide anion production was examined by human PMN using heat-killed cells of Staphylococcus aureus coated with GSLs. Gangliosides GM3, GD1a, GD3 and GT1b showed a marked stimulatory effect on the phagocytosis and P–L fusion in a dose-dependent manner, while ganglioside GM1, asialo GM1 and neutral GSLs did not. The relative phagocytic rate of ganglioside GM3-coated S. aureus was the highest among the tested GSLs. Both P–L fusion rate and phagocytosis of S. aureus were elevated significantly when coated with ganglioside GD1a, GD3 or GT1b, and GT1b gave a five times higher rate than that of the non-coated control. These results suggest that the terminal sialic acid moiety is essential for the enhancement of phagocytosis and that the number of sialic acid molecules in the ganglioside is related to the enhancement of the P–L fusion process. On the other hand, the superoxide anion release from PMN was not affected by ganglioside GM2, GM3, GD1a or GT1b. Furthermore, to clarify the trigger or the signal transduction mechanism of phagocytic processes, we examined the effect of protein kinase inhibitors such as H-7, staurosporine (protein kinase C inhibitor), H-89 (protein kinase A inhibitor), genistein (tyrosine kinase inhibitor), ML-7 (myosin light chain kinase inhibitor), and KN-62 (Ca2+/calmodulin-dependent protein kinase II inhibitor) on ganglioside-induced phagocytosis. H-7, staurosporine and KN-62 inhibited ganglioside-induced phagocytosis in the range of concentration without cell damage, while H-89, genistein and ML-7 did not. Moreover, H-7 and KN-62 inhibited ganglioside-induced P–L fusion. These results suggest that protein kinase C and Ca2+/calmodulin-dependent protein kinase II may be involved in the induction of phagocytosis and P–L fusion stimulated by gangliosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman DL, Morrison DC, Ryan JL (1986) Cellular Immunol 100: 288-99.

    Article  CAS  Google Scholar 

  2. Melikyan GB, Matinyan NS, Arakelian VB (1990) Biochim Biophys Acta 1030: 11-15.

    Article  PubMed  CAS  Google Scholar 

  3. Nojiri H, Kitagawa S, Nakamura M, Kirito K, Enomoto Y, Saito M (1988) J Biol Chem 263: 7443-46.

    PubMed  CAS  Google Scholar 

  4. Riedl M, Forster O, Rumpold H, BernheimerH (1982) J Immunol 128: 1205-10.

    PubMed  CAS  Google Scholar 

  5. Karlsson KA (1989) Annu Rev Biochem 58: 309-50.

    Article  PubMed  CAS  Google Scholar 

  6. Ofek I, Sharon N (1990) Curr Top Microbiol Immunol 151: 91-113.

    PubMed  CAS  Google Scholar 

  7. Ladisch S, Becker H, Ulsh L (1992) Biochim Biophys Acta 1125: 180-88.

    PubMed  CAS  Google Scholar 

  8. Ladisch S, Hasegawa A, Li R, Kiso M (1994) Biochem Biophys Res Commun 203: 1102-9.

    Article  PubMed  CAS  Google Scholar 

  9. Ladisch S, Li R, Olson E (1994) Proc Natl Acad Sci 91: 1974-78. Effect of gangliosides on phagocytosis and phagosome-lysosome fusion 713

    CAS  Google Scholar 

  10. Ladisch S, Hasegawa A, Li R, Kiso M (1995) Biochemistry 34: 1197-202.

    Article  PubMed  CAS  Google Scholar 

  11. Tiemeyer M, Swank-Hill P, Schnaar RL (1990) J Biol Chem 265: 11990-99.

    PubMed  CAS  Google Scholar 

  12. Saito M (1993) Adv Lipid Res 25: 303-27.

    PubMed  CAS  Google Scholar 

  13. Miyazaki Y, Oka S, Yamaguchi S, Mizuno S, Yano I (1995) J Biochem 118: 271-77.

    PubMed  CAS  Google Scholar 

  14. Yamaguchi S, Miyazaki Y, Oka S, Yano I (1996) FEMS Immunol Med Microbiol 13: 107-111.

    PubMed  CAS  Google Scholar 

  15. Kitagawa S, Ohta M, Nojiri H, Kakinuma K, Saito M, Takaku F, Miura Y (1984) J Clin Invest 73: 1062-71.

    Article  PubMed  CAS  Google Scholar 

  16. Miyazaki Y, Oka S, Hara-Hotta H, Yano I (1993) FEMS Immunol Med Microbiol 6: 265-72.

    Article  PubMed  CAS  Google Scholar 

  17. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y (1984) Biochemistry 23: 5036-41.

    Article  PubMed  CAS  Google Scholar 

  18. Gross JL, Herblin WF, Do UH, Pounds JS, Buenaga LJ, Stephens LE (1990) Biochem Pharmacol 40: 343-50.

    Article  PubMed  CAS  Google Scholar 

  19. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990) J Biol Chem 265: 5267-72.

    PubMed  CAS  Google Scholar 

  20. Linassier C, Pierre M, Le Pecq JB, Pierre J (1990) Biochem Pharmacol 39: 187-93.

    Article  PubMed  CAS  Google Scholar 

  21. Saitoh M, Ishikawa T, Matsushima S, Naka M, Hidaka H (1987) J Biol Chem 262: 7796-801

    PubMed  CAS  Google Scholar 

  22. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H (1990) J Biol Chem 265: 4315-20.

    PubMed  CAS  Google Scholar 

  23. Van Oss CJ (1978) Ann Rev Microbiol 32:19-39.

    Article  Google Scholar 

  24. Brandley BK, Kiso M, Abbas S, Nikrad P, Srivasatava O, Foxall C, Oda Y, Hasegawa A (1993) Glycobiology 3: 633-39.

    PubMed  CAS  Google Scholar 

  25. Yuen CT, Bezouška K, O'Brien J, Stoll M, Lemoine R, Lubineau A, Kiso M, Hasegawa A, Bockovich NJ, Nicolaou KC, Feizi T (1994) JBiol Chem 269: 1595-98.

    CAS  Google Scholar 

  26. Zheng L, Zomerdijk TPL, Aarnoudse C, Furth RV, Nibbering PH (1995) J Immunol 155: 776-84.

    PubMed  CAS  Google Scholar 

  27. Gresham HD, Zheleznyak A, Mormol JS, Brown EJ (1990) J Biol Chem 265: 7819-26.

    PubMed  CAS  Google Scholar 

  28. Tanimura M, Kobuchi H, Utsumi T, Yoshioka T, Kataoka S, Fujita Y, Utsumi K (1992) Biochem Pharmacol 44: 1045-52.

    Article  PubMed  CAS  Google Scholar 

  29. Takai Y, Sasaki T, Tanaka K, Nakanishi H (1995) Trends in Biochemical Sciences 20: 227-31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, S., Miyazaki, Y., Oka, S. et al. Stimulatory effect of gangliosides on phagocytosis, phagosome–lysosome fusion, and intracellular signal transduction system by human polymorphonuclear leukocytes. Glycoconj J 14, 707–714 (1997). https://doi.org/10.1023/A:1018517400380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018517400380

Navigation