Skip to main content
Log in

Kinetics and mechanism of decarboxylation of cis-carbonato- and bicarbonato(3,3′,3′′-triaminotripropylamine)cobalt(III) ions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The acid-catalysed hydrolysis of [Co(trpn)(CO3)]+ and [Co(trpn)(HCO3)]2+ ions (trpn = 3,3′,3′′-triaminotripropylamine) have been studied spectrophotometrically in aqueous 1.0m HClO4/NaClO4. For the carbonato complex, [HClO4] = 0.02–0.25m and T = 20–35°C; for the bicarbonato complex, [HClO4] = 0.025–0.30m and T = 25°C. Both complexes hydrolyse to form the same cis-diaqua species. The rate law for the hydrolysis is d(ln[CoIII])/dt = k0+k1[H3O+]. The values of the rate constants (25°C), ΔH‡ (kJmol−1) and ΔS‡ (Jmol−1K−1)are:[Co(trpn)(CO3)]+,k0 = (1.7±0.6)× 10−4s−1, ΔH‡ 0 = 57±21, Δ S‡ 0 = −126±75; k1 = (1.0 ±0.1)×10−2m−1s−1, ΔHDagger;1 = 62±8, Δ S‡1 = −75 ±21, and for [Co(trpn)(HCO3)]2+, k0 = (2.9±0.7)× 10−4s−1, and k1 = (7.8±1.0)×10−2m−1s−1. The carbonato complex exhibits a deuterium isotope effect with k1D/k1H = 1.9, consistent with a rapid pre-equilibrium protonation, followed by rate-controlling ring-opening. The rate constants k0 and k1 (25°C and μ = 1.0m) for the ring-opening decarboxylation of the two systems studied lie within the experimental error. The results are compared with o ther related systems and the factors which influence the ring-opening decarboxylation (steric hindrance, ring strain, electron-donor ability of the amines) are discussed. The k1 path is interpreted in terms of concerted ring-opening and bond-making in the highly unstable aquabicarbonato intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ligand abbreviations: trpn = 3,3′,3″-triaminotripropylamine; tren = 2,22,2″-triaminotriethylamine; trien = 1,8-diamino-3,6-diazaoctane; Me2trien = 3,6-dimethyl-1,8-diamino-3,6-diazaoctane; en = 1,2-diaminoethane; pn = 1,2-diaminopropane; tn = 1,3-diaminopropane; bmen = N, N2-dimethyl-1,2-diaminoethane; tme = 2,3-diamino-2,3-dimethylbutane; py = pyridine.

  2. S. S. Massoud and R. B. Jordan, Inorg. Chim. Acta, 221, 9 (1994), and reference cited therein.

    Article  CAS  Google Scholar 

  3. D. A. Palmer and R. van Eldik, Coord. Chem., 83, 651 (1983).

    CAS  Google Scholar 

  4. R. W. Hay and B. Jeragh, J. Chem. Soc., Dalton Trans., 1343 (1979).

  5. G. M. Harris and K. E. Hyde, Inorg. Chem., 17, 1892 (1978).

    Article  CAS  Google Scholar 

  6. T. P. Dasgupta and G. M. Harris, J. Am. Chem. Soc., 93, 91 (1971).

    Article  CAS  Google Scholar 

  7. F. A. Posey and H. Taube, J. Am. Chem. Soc., 75, 4099 (1953).

    Article  CAS  Google Scholar 

  8. D. J. Francis and R. B. Jordan, Inorg. Chem., 11, 461 (1972).

    Article  CAS  Google Scholar 

  9. F. D. Baeta, S. A. Bajue and T. P. Dasgupta, J. Chem. Soc., Dalton Trans., 599 (1990).

  10. T. P. Dasgupta, Inorg. Chim. Acta, 20, 33 (1976).

    Article  CAS  Google Scholar 

  11. D. J. Francis and G. H. Searle, Aust. J. Chem., 27, 269 (1974).

    Article  CAS  Google Scholar 

  12. J. A. Kerhohan and J. F. Endicott, J. Am. Chem. Soc., 91, 6977 (1969).

    Article  Google Scholar 

  13. R. W. Hay and B. Jeragh, Transition Met. Chem., 4, 288 (1979); 5, 252 (1980).

    Article  CAS  Google Scholar 

  14. S. S. Massoud and R. M. Milburn, Polyhedron, 8, 275 (1988).

    Article  Google Scholar 

  15. S. S. Massoud and R. M. Milburn, Polyhedron, 8, 415 (1988).

    Article  Google Scholar 

  16. S. S. Massoud and M. A. Haiza, Polyhedron, 11, 1443 (1992).

    Article  CAS  Google Scholar 

  17. J. A. Laurino, S. Knapp and H. J. Schugar, Inorg. Chem., 17, 2027 (1978).

    Article  CAS  Google Scholar 

  18. S. S. Massoud and R. M. Milburn, Inorg. Chem. Acta., 154, 115 (1988).

    Article  CAS  Google Scholar 

  19. J. A. Connolly, M. Banaszczyk, R. C. Hynes and J. Chin, Inorg. Chem., 33, 665 (1994); S. S. Massoud, Ph.D. thesis, Boston University, Boston, MA, USA (1985).

    Google Scholar 

  20. V. S. Sastri and G. M. Harris, J. Am. Chem. Soc., 92, 2943 (1970).

    Article  CAS  Google Scholar 

  21. E. L. Purlee, J. Am. Chem. Soc., 81, 263 (1959).

    Article  CAS  Google Scholar 

  22. A. Dei, P. Paoletti and A. Vacca, Inorg. Chem., 7, 865 (1968).

    Article  Google Scholar 

  23. G. A. Barclay and B. F. Hoskins, J. Chem. Soc., 586 (1962).

  24. P. C. Healy, C. H. L. Kennard, G. Smith and A. H. White, Cryst. Struct. Commun., 10, 883 (1981).

    CAS  Google Scholar 

  25. F. Bigoli, M. Lanfranchi, E. Leporati and M. Pellinghelli, Cryst. Struct. Commun., 9, 1261 (1980).

    CAS  Google Scholar 

  26. R. J. Geue and M. R. Snow, J. Chem Soc. A, 2981 (1971).

  27. T. P. Dasgupta and G. M. Harris, J. Am. Chem. Soc., 97, 1733 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massoud, S.S. Kinetics and mechanism of decarboxylation of cis-carbonato- and bicarbonato(3,3′,3′′-triaminotripropylamine)cobalt(III) ions. Transition Metal Chemistry 22, 304–308 (1997). https://doi.org/10.1023/A:1018485012656

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018485012656

Keywords

Navigation