Skip to main content
Log in

Stability Constants of Cobalt(II) Complexes with Pyridinecarboxylic Acids in 1.0 mol·dm−3 NaNO3 at 25 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Potentiometric measurements were used to determine the stability constants of cobalt(II) complexes with a series of pyridine mono and dicarboxylic acids. The following pyridinecarboxylic acids were used: pyridine-2-carboxylic acid (also known as picolinic acid (HPic, HL)), pyridine-3-carboxylic acid (also known as nicotinic acid (HNic, HL)), and pyridine-4-carboxylic acid, known as isonicotinic acid (HIso, HL), the 2-chloropyridine-3-carboxylic acid (HCl-Nic, HL), pyridine-2,6-dicarboxylic acid known as dipicolinic acid (H2Dipic, H2L), pyridine-2,4-dicarboxylic acid (H22,4-Dipic, H2L), pyridine-2,5-dicarboxylic acid (H22,5-Dipic, H2L) and pyridine-3,4-dicarboxylic acid (H23,4-Dipic, H2L). 1.0 mol·dm−3 NaNO3 was used as the ionic medium at 25 °C. Additionally, the hydrolytic cobalt(II) constants were determined under the same experimental conditions. A spectrophotometric study based on Job’s plot and the molar ratio method was completed to validate the potentiometric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Idriss, K.A., Saleh, M.S., Sedaira, H., Seleim, M.M., Hashem, E.Y.: Solution equilibria and stability of the complexes of pyridinecarboxylic acids: complexation reaction of mercury (II) with 2-hydroxynicotinic acid. Monatsh. Chem. 122, 507–520 (1991). https://doi.org/10.1007/BF00809803

    Article  CAS  Google Scholar 

  2. Anderson, R.A.: Chromium in the prevention and control of diabetes. Diabetes Metab. 26, 22–28 (2000)

    CAS  PubMed  Google Scholar 

  3. Melchior, M., Thompson, K.H., Jong, J.M., Rettig, S.J., Shutter, E., Yuen, V.G., Zhou, Y., McNeill, J.H., Orvig, C.: Vanadium complexes as insulin mimetic agents: coordination chemistry and in vivo studies of oxovanadium(IV) and dioxovanadate(V) complexes formed from naturally occurring chelating oxazolinate, thiazolinate, or picolinate units. Inorg. Chem. 38, 2288–2293 (1999). https://doi.org/10.1021/ic981231y

    Article  CAS  Google Scholar 

  4. Jingyan, S., Jie, L., Yun, D., Ling, H., Xin, Y., Zhiyong, W., Yuwen, L., Cunxin, W.: Investigation of thermal behavior of nicotinic acid. J. Therm. Anal. Calorim. 93, 403–409 (2008). https://doi.org/10.1007/s10973-007-8593-7

    Article  CAS  Google Scholar 

  5. Kanchana, P., Bhuvaneswari, V., Sangeedha, A.: Synthesis and characterization of mixed ligand complexes of transition metals with nicotinic acid and isonicotinic acid with hydrazine. Int. J. Chem. Appl. 6, 121–131 (2014)

    Google Scholar 

  6. Chung, L., Rajan, K.S., Merdinger, E., Grecz, N.: Coordinative binding of divalent cations with ligands related to bacterial spores. Biophys. J. 11, 469–482 (1971). https://doi.org/10.1016/S0006-3495(71)86229-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buglyó, P., Crans, D.C., Nagy, E.M., Lindo, R.L., Yang, L., Smee, J.J., Jin, W., Chi, L.H., Godzala, M.E., III., Willsky, G.R.: Aqueous chemistry of the vanadiumIII(VIII) and the VIII-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats. Inorg. Chem. 44, 5416–5427 (2005). https://doi.org/10.1021/ic048331q

    Article  CAS  PubMed  Google Scholar 

  8. Peralta-Neel, Z., Woerpel, K.A.: Hydroperoxidations of alkenes using cobalt picolinate catalysts. Org. Lett. 23, 5002–5006 (2021). https://doi.org/10.1021/acs.orglett.1c01489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, L., Crans, D.C., Miller, S.M., La Cour, A., Anderson, O.P., Kaszynski, P.M., Godzala, M.E., III., Austin, L.D., Willsky, G.R.: Cobalt(II) and cobalt(III) dipicolinate complexes: solid state, solution, and in vivo insulin-like properties. Inorg. Chem. 41, 4859–4871 (2002). https://doi.org/10.1021/ic020062l

    Article  CAS  PubMed  Google Scholar 

  10. Martak, F., Mutiara, E., Alwathoni, M., Gunawan, T., Soegijanto, S.: Synthesis and characterization of Co(II) pyridine-2,6-dicarboxylate complexes as anticancer compound. Rasayan J. Chem. 14(3), 1629–1634 (2021). https://doi.org/10.31788/RJC.2021.1435823

    Article  CAS  Google Scholar 

  11. Brito, F., Araujo, M.L., Lubes, V., D’Ascoli, A., Mederos, A., Gili, P., Domínguez, S., Chinea, E., Hernández-Molina, R., Armas, M.T., Baran, E.J.: Emf(H) data analysis of weak metallic complexes using reduced formation functions. J. Coord. Chem. 58, 501–512 (2005). https://doi.org/10.1080/00958970500037433

    Article  CAS  Google Scholar 

  12. Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods. VI. A strategy for two-level Letagrop adjustment of common and “group” parameters Features that avoid divergence. Ark. Kemi. 31, 315–339 (1969)

    Google Scholar 

  13. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble Species. Coord. Chem. Rev. 184, 311–318 (1999). https://doi.org/10.1016/S0010-8545(98)00260-4

    Article  CAS  Google Scholar 

  14. Girolami, G.S., Rauchfuss, T.B., Angelici, R.J.: Synthesis and technique in inorganic chemistry: a laboratory manual, 3rd edn. University Science Book, Melville (1999)

    Google Scholar 

  15. Willard, H., Merrit, L., Dean, J., Settle, F.: Métodos Instrumentales de análisis. Grupo Editorial Iberoamericana, Mexico (1991)

    Google Scholar 

  16. Hernández, L., Del Carpio, E., Madden, W., Lubes, G., Pérez, A., Rodriguez-Lugo, R.E., Landaeta, V.R., Araujo, M.L., Martínez, J.D., Lubes, V.: Determination of stability constants of ternary copper(II) complexes formed with picolinic acid and several amino acids. Phys. Chem. Liq. 58(1), 31–48 (2020). https://doi.org/10.1080/00319104.2018.1534235

    Article  CAS  Google Scholar 

  17. Halle, J.C., Lelievre, J., Terrier, F.: Solvent effect on preferred protonation sites in nicotinate and isonicotinate anions. Can. J. Chem. 74, 613–620 (1996). https://doi.org/10.1139/v96-065

    Article  CAS  Google Scholar 

  18. McMurry, J.E.: Organic chemistry with biological applications, 3rd edn. Cengage Learning, Boston (2014)

    Google Scholar 

  19. Powell, K.J., Pettit, L.D.: IUPAC stability constants database. Academic Software, Otley (1997)

    Google Scholar 

  20. Martell, A.E., Smith, M., Motekaitis, R.J.: NIST Critical stability constants of metal complexes database. US Department of Commerce, Gaithersburg (1993)

    Google Scholar 

  21. Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000). https://doi.org/10.1016/S0039-9140(99)00245-3

    Article  CAS  PubMed  Google Scholar 

  22. Hernández, R., Rodríguez, R., Martínez, J.D., Araujo, M.L., Brito, F., Lubes, G., Rodríguez, M., Hernández, L., Lubes, V.: Complexation equilibria and determination of stability constants of binary and ternary nickel(II) complexes with amino acids (glycine, α-alanine, β-alanine and proline) and dipicolinic acid as ligands. J. Solution Chem. 41(7), 1103–1111 (2012). https://doi.org/10.1007/s10953-012-9867-7

    Article  CAS  Google Scholar 

  23. Hernández, L., Lubes, G., Rodríguez, M., Echevarria, L., Lubes, V.: Complejos de V(III) en solución acuosa con el ácido 2,3-Dipicolínico. CIENCIA 22(2), 115–121 (2014)

    Google Scholar 

  24. Kidani, Y., Hirose, J.: Coordination chemical studies on metalloenzymes II Kinetic behavior of various types of chelating agents towards bovine carbonic anhydrase. J. Biochem. 81, 1383–1391 (1977). https://doi.org/10.1093/oxfordjournals.jbchem.a131592

    Article  CAS  PubMed  Google Scholar 

  25. Pal, V., Sawhney, M.P., Sharma, K.N.: Stability constants of complexes of pyridine-2,5-dicarboxylic acid with some transition metal ion. Indian J. Chem. 22A, 177–178 (1983)

    CAS  Google Scholar 

  26. Collados, M.P., Brito, F., Diaz Cadavieco, R.: Hidrolisis de Cobalto(II) en (Ba, Co)(ClO4)2 1.5 M y 25 °C. An. Fis. Quim. 63B, 843–845 (1967)

    Google Scholar 

  27. Shankar, J., De Souza, B.C.: Hydrolysis of Co2+(aq) and Ni2+(aq) ions. Aust. J. Chem. 16, 1119–1122 (1963). https://doi.org/10.1071/CH9631119

    Article  CAS  Google Scholar 

  28. Bolzan, J.A., Podesta, J.J., Arvia, A.J.: Equilibrio hidrolítico de iones metalicos. I. La hidrolisis del ion Co(II) en soluciones acuosas de NaClO4. An. Asoc. Quim. Argentina 51, 43–58 (1962)

    Google Scholar 

  29. Giasson, G., Tewari, P.H.: Hydrolysis of Co(II) at elevated temperatures. Can. J. Chem. 56, 435–440 (1978). https://doi.org/10.1139/v78-069

    Article  CAS  Google Scholar 

  30. Gayer, K.H., Garrett, A.B.: The solubility of cobalt hydroxide, Co(OH)2, in solutions of hydrochloric acid and sodium hydroxide at 25 °C. J. Am. Chem. Soc. 72, 3921–3923 (1950). https://doi.org/10.1021/ja01165a024

    Article  CAS  Google Scholar 

  31. Ziemniak, S.E., Goyette, M.A., Combs, K.E.S.: Cobalt(II) oxide solubility and phase stability in alkaline media at elevated temperatures. J. Solution Chem. 28, 809–836 (1999). https://doi.org/10.1023/A:1021728113762

    Article  CAS  Google Scholar 

  32. Jellinek, K.D.: Static chemischer Reakttionen in verdunnten Mischungen (Schlussteil), die Lehre von den konzentrierten Mischungen, die Phasenlehre, 2nd edn., p. 890. Lehrbuch Physiche Chemie, Enke, Stuttgart (1933)

    Google Scholar 

  33. Gordon, S., Schreyer, J.M.: The solubility of cobalt (II) in sodium and potassium hydroxide solutions. Chem. Anal. 44, 95–96 (1955)

    CAS  Google Scholar 

  34. Gaizer, F., Buxbaum, P., Papp-Molnar, E., Burger, K.: Effect of the solvent on complex equilibria—II: equilibrium study of the pyridine-2-carboxylic acid complex of cobalt (II) in mixed solvents. J. Inorg. Nucl. Chem. 36, 859–862 (1974). https://doi.org/10.1016/0022-1902(74)80826-2

    Article  CAS  Google Scholar 

  35. Anderegg, G.: Pyridinderivate als Komplexbildner I. Pyridincarbonsauren. Helv. Chim. Acta 43, 414–424 (1960). https://doi.org/10.1002/hlca.19600430153

    Article  CAS  Google Scholar 

  36. Miessler, G., Fischer, P.J., Tarr, D.A.: Inorganic chemistry, 5th edn. Perason, London (2014)

    Google Scholar 

  37. Waizumi, K., Takuno, M., Fukushima, N., Masuda, H.: Structures of pyridine carboxylate complexes of Cobalt(II) and Copper(II). J. Coord. Chem. 44, 269–279 (1998). https://doi.org/10.1080/00958979808023079

    Article  CAS  Google Scholar 

  38. Tichane, R., Bennett, W.: Coördination compounds of metal ions with derivatives and analogs of ammoniadiacetic acid. J. Am. Chem. Soc. 79, 1293–1296 (1957). https://doi.org/10.1021/ja01563a009

    Article  CAS  Google Scholar 

  39. Hirose, J., Kidani, Y.: Coordination studies on metalloenzymes. IV. Kinetic and thermodynamic studies of metal removal reaction from zinc and cobalt-carbonic anhydrase with chelating agents. Chem. Pharm. Bull. 26(6), 1768–1775 (1978). https://doi.org/10.1248/cpb.26.1768

    Article  CAS  Google Scholar 

  40. Okabe, N., Miura, J., Shimosaki, A.: A hydrated cobalt(II) complex of quinolinic acid: trans-[Co(C7H4NO4)2(H2O)2]. Acta Cryst. C52, 1610–1612 (1996). https://doi.org/10.1107/S0108270196002314

    Article  CAS  Google Scholar 

  41. Norkus, E., Gaidamauskas, E., Irena, S.: Interaction of pyridine-2,5-dicarboxylic acid with heavy metal ions in aqueous solutions. Heteroatom Chem. 16(4), 285–291 (2005). https://doi.org/10.1002/hc.20123

    Article  CAS  Google Scholar 

  42. Basaran, B., Avşaŕ, E., Bedia, E., Göçmen, A.: Thermodynamics of benzoate complexes of cobalt (II), nickel (II) and manganese (II) in aqueous solution. Thermochim. Acta 186, 145–151 (1991). https://doi.org/10.1016/0040-6031(91)87031-Q

    Article  CAS  Google Scholar 

  43. Desai, I.R., Nair, V.S.K.: Metal complexes in solution. I. Phthalates of some transition metals. J. Chem. Soc. (1962). https://doi.org/10.1039/JR9620002360

    Article  Google Scholar 

  44. Jehličková, A., Vláčil, F.: Determination of the stability constants of the complex of cobalt with pyridine. Collect. Czech. Chem. Commun. 38, 3395–3398 (1973). https://doi.org/10.1135/cccc19733395

    Article  Google Scholar 

  45. Ulatowski, F., Dąbrowa, K., Bałakier, T., Jurczak, J.: Recognizing the limited applcability of Job plots in studying host-guest interactions in Supramolecular Chemistry. J. Org. Chem. 81(5), 1746–1756 (2016). https://doi.org/10.1021/acs.joc.5b02909

    Article  CAS  PubMed  Google Scholar 

  46. Hibbert, D.B., Thordarson, P.: The death of Job plot, trasparency, open science and online tools, uncertainty estimation methods and others developments, in supramolecular chemistry data analysis. Chem. Comm. 52, 12792 (2016). https://doi.org/10.1039/C6CC03888C

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by “Decanato de Investigación y Desarrollo”, from Universidad Simón Bolívar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Lubes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, L., Araujo, M.L., Del Carpio, E. et al. Stability Constants of Cobalt(II) Complexes with Pyridinecarboxylic Acids in 1.0 mol·dm−3 NaNO3 at 25 °C. J Solution Chem 52, 588–603 (2023). https://doi.org/10.1007/s10953-023-01254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01254-7

Keywords

Navigation