Skip to main content
Log in

Effect of gelling on the surface structure of a porous lead electrode in sulfuric acid

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of immobilizing the electrolyte using thixotropic agents such as sodium silicate on the electrochemical behaviour of lead in sulfuric acid is studied using electrochemical methods such as cyclic voltammetry (CV), charging curve technique, Tafel polarization and surface spectroscopic methods including X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). CV studies indicate a 700mV cathodic shift in the hydrogen evolution potential as a result of gelling while the well-known reversible Pb/Pb2+ couple is found to be thermodynamically disfavoured (100mV and 50mV shifts for the Pb dissolution and Pb2+ reduction reactions respectively). In addition, a significant change in the double layer capacitance by 600μFcm−2 is observed at the same potential probably due to the contribution of silicate adsorption at the interfacial region. Exchange current density values for hydrogen evolution reaction calculated from Tafel plots are 1.35×10−6Acm−2 and 1.31×10−8Acm−2 for free and gelled electrolytes, respectively, which reveal the kinetic suppression of HER. However, XPS studies give no evidence for the chemisorption of silicate on the lead surface, although SEM analysis shows appreciable change in the surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Alexander and P. Johnson, `Colloid Science', Clarendon Press, Oxford (1949).

    Google Scholar 

  2. I. C. Kwon, Y. H. Bae and S. W. Kim, Nature 354 (1991) 291.

    Google Scholar 

  3. E. Tschida and K. Abe, Adv. Polym. Sci. 45 (1982) 1.

    Google Scholar 

  4. K. Ignatova and J. Nikolova, Bull. Electrochem. Soc. 8 (1992) 266.

    Google Scholar 

  5. G. Daccord and R. Lenormand, Nature 325 (1987) 41.

    Google Scholar 

  6. J. Nittmann, G. Decord, H. E. Stankey., ibid. 314 (1985) 141.

    Google Scholar 

  7. L. Nilemeyer, L. Pietronero and H. J. Weismann, Phys. Rev. Lett. 52 (1984) 1033.

    Google Scholar 

  8. N. P. Pavletich and C. O. Paboo, Science 252 (1991) 809.

    Google Scholar 

  9. R. Newmann and L. E. Michael, Appl. Cat. A 122 (1995) 85.

    Google Scholar 

  10. R. G. Lindford (ed.), `Electrochemical Science and Technology of Polymers' vols. 1-2, Elserveir Applied Sciences, New York, (1987).

    Google Scholar 

  11. M. E. Armand, J. J. Chabagno and M. J. Duclot., `Fast Ion Transport in Solids' (edited by P. Vashishta, J. N. Mundy and G. K. Shenoy), North-Holland, Amsterdam (1979).

  12. M. T. Reetz, A. Zonta and J. Simpelkamp., Angew. Chem. Int. Ed. Engl. 34 (1995) 301.

    Google Scholar 

  13. K. Vijayamohanan, S. N. Joshi and S. S. Sathayanaryana, J. Power Sources 30 (1990) 169.

    Google Scholar 

  14. H. Tuphron, ibid. 23 (1988) 143.

    Google Scholar 

  15. G. Posch, ibid. 33 (1991) 127.

    Google Scholar 

  16. M. P. Vinod, and K. Vijayamohanan, J. Appl. Electrochem. 24 (1994) 44.

    Google Scholar 

  17. Idem, J. Power Sources 50 (1994) 67.

    Google Scholar 

  18. Idem, J. Appl. Electrochem. 25 (1995) 80.

    Google Scholar 

  19. Idem, J. Power Sources 50 (1994) 67.

    Google Scholar 

  20. R. Iler, `The Chemistry of Silica', John Wiley, New York, (1979), p. 287.

    Google Scholar 

  21. P. Delahay `Double Layer and Electrode Kinetics', Wiley-Interscience New York (1965), Chapter 2.

    Google Scholar 

  22. C. H. Preshred Jr. and S. Schuldimer, J. Electrochem. Soc. 180 (1961) 985.

    Google Scholar 

  23. P. E. Bowden, Proc. Roy. Soc. 125A (1929) 446.

    Google Scholar 

  24. R. Delevie, Adv. Electrochem. Engng. 6 (1967) 239.

    Google Scholar 

  25. J. Newman and W. Tiedemann, AIChE J. 21 (1975) 35.

    Google Scholar 

  26. D. Pavlov and Z. Dinev, J. Electrochem Soc. 127 (1980) 885.

    Google Scholar 

  27. A. T. Hubbard, Langmuir 6 (1990) 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VINOD , M.P., MANDLE , A.B., SAINKAR , S.R. et al. Effect of gelling on the surface structure of a porous lead electrode in sulfuric acid. Journal of Applied Electrochemistry 27, 462–468 (1997). https://doi.org/10.1023/A:1018473906875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018473906875

Keywords

Navigation