Skip to main content
Log in

Microstructural Aspects of Fracture Mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

General analysis of the role of microstructure in a material fracture behavior is presented. It is argued that existence of a characteristic structural lengthscale is implicitly assumed in linear fracture mechanics. Fracture behavior of the material microstructural element controls macroscopic apparent fracture properties. In particular, the greater characteristic size of the microstructural element the greater is the material fracture toughness or effective fracture energy. Data for brittle engineering materials, such as ceramics, are analyzed from this viewpoint. Time-dependent and imperfectly elastic behavior is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances of Applications Mechanics 7, 55-129.

    Article  MathSciNet  Google Scholar 

  • Barenblatt, G.I. (1979). Similarity, Self-similarity and Intermediate Asymptotics, N.Y., Consultants Bureau.

    MATH  Google Scholar 

  • Barenblatt, G.I., Entov, V.M. and Salganik, R.L. (1966a). On the kinetics of cracks propagation. General outlook. Nearly equilibrium cracks. Inzhenernyi Zhurnal, Mekh. Tverdogo Tela [Journal of Engineering, Mechanics of Solids] 5, 82-92.

    Google Scholar 

  • Barenblatt, G.I., Entov, V.M. and Salganik, R.L. (1966b). On the kinetics of cracks propagation. Fracture condition and static fatigue. Inzhenernyi Zhurnal, Mekh. Tverdogo Tela [Journal of Engineering, Mechanics of Solids] 6, 76-80.

    Google Scholar 

  • Barenblatt, G.I., Entov, V.M. and Salganik, R.L. (1967). On the kinetics of cracks propagation. Fluctuational fracture. Inzhenernyi Zhurnal, Mekh. Tverdogo Tela [Journal of Engineering, Mechanics of Solids] 1, 122-128.

    Google Scholar 

  • Bazant, Z. (1985). Mechanics of fracture and progressive cracking in concrete structures. In: G.C. Sih and A.D. Thommaso. Fracture Mechanics of Concrete, Martin Nijhoff.

  • Chevalier, J., Olagnon, Ch., Fantozzi, G. and Cales, B. (1995). Crack propagation behavior of Y-TZP ceramics. Journal of the American Ceramic Society 78(7), 1889-94.

    Article  Google Scholar 

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of Mechanical Physics of Solids 8(2), 100-104.

    Article  ADS  Google Scholar 

  • Entov, V.M. (1976). On the role of material structure in the fracture mechanics. Izv. AN SSSR, Mekh. Tverd. Tela [Proceedings of the USSR Academy of Science, Mechanics of Solids] 3, 110-118.

    Google Scholar 

  • Entov, V.M. and Salganik, R.L. (1968). On cracks in viscoelastic solids. Inzhenernyi Zhurnal, Mekh. Tverdogo Tela [Journal of Engineering, Mechanics of Solids] 2, 88-94.

    Google Scholar 

  • Entov, V.M. and Salganik, R.L. (1969). On Prandtl's crack in a viscoelastic solid. Steady-state crack propagation. Izv. AN SSSR, Mekh. Tverdogo Tela [Proceedings of the Academy Science, Mechanics of Solids] 6, 41-60.

    Google Scholar 

  • Entov, V.M. and Yagust, V.I. (1975). Experimental investigation of quasistatic cracks growth in concrete. Izv. AN SSSR, Mekh. Tverd. Tela [Proceedings of the USSR Academy Science, Mechanics of Solids] 4, 93-103.

    Google Scholar 

  • Griffith, A.A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A221, 163-198.

    ADS  Google Scholar 

  • Griffith, A.A. (1924). The theory of rupture. In: Proceedings of the First International Congress of Applied Mechanics, (eds. C.B. Biezeno & J.M. Burgers). J. Waltman Jr., Delft, 55-63.

    Google Scholar 

  • Gutschall, P.L. and Gross, G.E. (1968). Fracture = strength. Ceramic Age 84(9), 22-24.

    Google Scholar 

  • Irwin, G.R. (1948). Fracture dynamics. In: Fracture of Metals, American Society Metal Transaction Quarterly, Cleveland 40A, 147-166.

    Google Scholar 

  • Irwin, G.R. (1958). Fracture. In: Handbuch der Physik, Springer, Berlin 6, 551-590.

    Google Scholar 

  • Kim, Y.-W., Choi, H.-J. and Lee, J.-G. (1996). In-situ toughened silicon carbide-titanum carbide composites. Journal of the American Ceramic Society 79(6), 1711-13.

    Article  Google Scholar 

  • Kim, Y.-W., Mitomo, M. and Hirotsuru, H. (1995). Microstructural development of silicon carbide containing large seed grains. Journal of the American Ceramic Society 78(11), 3145-3148.

    Article  Google Scholar 

  • Krustulovic-Opara, N. (1993). Fracture process zone presence and behavior in mortar specimens. The Materials Journal of the American Concrete Institute 90(6), 618-626.

    Google Scholar 

  • Lange, F.F. (1971). Fracture energy and strength behavior of a sodium borosilicate glass-Al2O3 composite system. Journal of the American Ceramic Society 54(12), 614-620.

    Article  Google Scholar 

  • Lawn, B. (1993). Fracture of Brittle Solids, Cambridge University Press.

  • Leonov, M.Ya. and Panasyuk, V.V. (1959). Development of smallest cracks in solids. Prikladnaya Mekhanika 5(4) (in Ukranian).

  • Li, J.-F. and Watanabe, R., Fracture toughness of Al2O3-particle dispersion Y2O3-partially stabilized zirconia. Journal of the American Ceramic Society 78(4), 1079-1082.

  • Mandelbrot, B.B. (1982). The Fractal Geometry of Nature, W.H. Freeman, New York.

    MATH  Google Scholar 

  • Muraoka, M. and Abe, H. (1996). Subcritical crack growth in silica optical fibers in a wide range of crack velocities. Journal of the American Ceramic Society 79(1), 51-57.

    Article  Google Scholar 

  • Orowan, E. (1949). Fundamentals of brittle behavior of metals. In: Fatigue and Fracture of Metals, Wiley, N.Y., 139-167, 1950. 12, p. 48.

    Google Scholar 

  • Perdikaris, P.C. and Romeo, A. (1995). Size effect on fracture energy of concrete and stability issues in three-point bending fracture toughness testing. The Materials Journal of the American Concrete Institute 92(5), 483-496.

    Google Scholar 

  • Ruiz, L. and Readey, M.J. (1996). Effect of heat treatment on grain size, phase assemblage and mechanical properties of 3 mol% Y-TZP. Journal of the American Ceramic Society 79(9), 2331-40.

    Article  Google Scholar 

  • Smith, T.L. (1964). Relation between ultimate tensile properties of elastomers and their structure. Proceedings of the Royal Society A282(1388), 102-113.

    Google Scholar 

  • Swain, M.V. et al. (1983). The influence of the precipitate size and temperature on the fracture toughness of calcia-and magnesia-partially stabilized zirconia. In: Fracture Mechanics of Ceramics, R.C. Bradt, A.G. Evans, D.P.H. Hasselman, F.F. Lange, eds. 6, Plenum Press, 339-354.

  • Swanson, P.L. (1986). A fracture mechanics and non-destructive investigation of the subcritical fracture process in rock. In: Fracture Mechanics of Ceramics 8, Plenum Press, 299-317.

  • Swanson, G.D. and Gross, G.E. (1971). Factor analysis of fracture toughness test parameters for Al2O3. Journals of the American Ceramic Society 54(8), 382-385.

    Article  Google Scholar 

  • Thomson, J.V., Anusavice, K.J., Balasubramaniam, B. and Mecholsky, J.J. (1995). Effect of microcracking on the fracture toughness and fracture surface fractal dimension of lithia-based glass ceramics. Journals of the American Ceramic Society 78(11), 3045-3049.

    Article  Google Scholar 

  • Turcotte, D.L. (1992). Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 1992.

  • Ward, I.M. (1983). Mechanical Properties of Solid Polymers, 2nd Ed., Wiley, Chichester.

    Google Scholar 

  • Wells, A.A. (1965). The application of fracture mechanics to yielding materials. Proceedings of the Royal Society A 285(1400), 34-45.

    Google Scholar 

  • Wiederhorn, S.M. (1972). Subcritical crack growth in ceramics. Fracture Mechanics of Ceramics (Edited by R.C. Bradt, D.P.H. Hasselman and F.F. Lange), Plenum Press, New York 2, 613.

    Google Scholar 

  • Wiederhorn, S.M. (1978). Subcritical crack growth in glass. Fracture Mechanics of Ceramics (Edited by R.C. Bradt, D.P.H. Hasselman and F.F. Lange), Plenum Press, New York 4, 549-580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entov, V. Microstructural Aspects of Fracture Mechanics. International Journal of Fracture 99, 13–23 (1999). https://doi.org/10.1023/A:1018387007776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018387007776

Navigation