Skip to main content
Log in

Isozymes and DNA markers in gene conservation of forest trees

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

For long-lived plants that have to cope with high temporal and spatial environmental heterogeneity, genetic diversity is of prime importance for species persistence. Detrimental anthropogenic impact on the gene pool of forest trees calls for conservation of genetic resources. Potentials and limitations of isozymes and DNA markers in forest genetic conservation are reviewed. These markers can contribute to conservation with respect to the delimitations of species and hybrid zones, as well as the assessment of genetic diversity within and among populations. Markers are valuable to identify resource populations, since today‘s genetic diversity in forest trees is predominantly the result of plant history (e.g. glacial refuges, migration). Several suggestions have been put forward to optimize sampling of in situ or ex situ populations on the grounds of marker data. Restraint in this area is recommended. Different types of genetic markers (terpenes, isozymes, nuclear and extrachromosomal DNA polymorphisms) and quantitative traits yield different information about genetic diversity and population differentiation. Hence identification of resource populations should not solely be based upon a certain marker type or on quantitative traits alone. The capability of available markers to predict or assess adaptive potentials in forest tree populations is still very limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, B.V. (1975) Phenotypic variation of trembling aspen in western North America. For. Sci. 21, 319–28.

    Google Scholar 

  • Bartha, D. (1996) Die ausgestorbenen und gefährdeten Baum-und Straucharten in Mitteleuropa. Mitt. Dtsch. Dendrol. Ges. 82, 43–9.

    Google Scholar 

  • Bergmann, F. (1984) Ein besonderer Fall geographischer Variation an zwei Enzym-Genloci der Fichte (Picea abies). Verh. 3. Arbeitstagung Forum Genetik-Wald-Forstwirtschaft, Freiburg, 1983, pp. 8–14.

    Google Scholar 

  • Bergmann, F., Gregorius, H.-R. and Larsen, J.B. (1990) Levels of genetic variation in European silver fir (Abies alba). Are they related to species' decline? Genetica 82, 1–10.

    Article  Google Scholar 

  • Billington, H.L. (1991) Effect of population size on genetic variation in a dioecious conifer. Conserv. Biol. 5, 115–19.

    Article  Google Scholar 

  • Bogyo, T.P., Porceddu, E. and Perrino, P. (1980) Analysis of sampling strategies for collecting genetic material. Econ. Bot. 34, 160–74.

    Google Scholar 

  • Boscherini, G., Vendramin, G.G., Giannini, R. (1993) Mating system analysis of two Italian populations of Norway spruce. J. Genet. Breed. 47, 45–8.

    Google Scholar 

  • Breitenbach-Dorfer, M., Konnert, M., Pinsker, W., Starlinger, F. and Geburek, Th. (1997) The contact zone between two migration route of silver fir, Abies alba (Pinaceae), revealed by allozyme studies. Pl. Syst. Evol. (in press).

  • Bretting, P.K. and Widrlechner, M.P. (1995) Genetic markers and plant genetic resource management. Pl. Breed. Rev. 13, 11–86.

    Google Scholar 

  • Brown, A.H.D. (1978) Isozymes, plant population genetic structure and genetic conservation. Theor. Appl. Genet. 52, 145–57.

    Article  Google Scholar 

  • Brown, A.H.D. and Moran, G.F. (1981) Isozymes and the genetic resources of forest trees. In Isozymes of North American Forest Trees and Forest Insects (M.T. Conkle, techn. coord.) pp. 1–10. USDA For. Serv. Gen. Techn. Rep. PSW-48, USA.

  • Bucci, G. and Menozzi, P. (1995) Genetic variation of RAPD markers in a Picea abies Karst. population. Heredity 75, 188–97.

    Google Scholar 

  • Chakraborty, R. (1981) The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98, 461–6.

    Google Scholar 

  • Chalmers, K.J., Waugh, R., Sprent, J.I., Simons, A.J. and Powell, W. (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69, 465–72.

    PubMed  Google Scholar 

  • Chase, M., Kesseli, R. and Bawa, K. (1996) Microsatellite markers for population and conservation genetics of tropical trees. Amer. J. Bot. 83, 51–7.

    Article  Google Scholar 

  • Crow, J.F. and Kimura, M. (1970) An Introduction to Populations Genetics Theory. New York, USA: Harper and Row.

    Google Scholar 

  • Dow, B.D., Ashley, M.V. and Howe, H.F. (1995) Characterization of highly variable (GA/CT)n microsatellites in bur oak, Quercus macrocarpa. Theor. Appl. Genet. 91, 137–41.

    Article  CAS  Google Scholar 

  • El-Kassaby, Y.A. (1991) Genetic variation within and among conifer populations: review and evaluation of methods. In Biochemical Markers in the Population Genetics of Forest Trees (S. Fineschi, M.E. Malvolti, F. Cannata and H.H. Hattemer, eds) pp. 61–76. The Hague, the Netherlands: SPB Academic Publishing bv.

    Google Scholar 

  • Faivre-Rampant, P., Bodergat, R. and Bervillé, A. (1992) A molecular method to classify poplar (Populus) clones into sections Tacamahaca, Aigeiros, Leuce and Leucoides using ribosomal DNA variable restriction fragments. C.R. Acad. Sci. Paris 315, 133–8.

    CAS  Google Scholar 

  • Finkeldey, R. and Gregorius, H.-R. (1994) Genetic resources: selection criteria and design. In Conservation and Manipulation of Genetic Resources in Forestry (Z.-S. Kim and H.H. Hattemer, eds) pp. 322–47. Seoul, Korea: Kwang Moon Kag Publishing.

    Google Scholar 

  • Giannini, R., Morgante, M. and Vendramin, G.G. (1991) Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genet. 40, 160–6.

    Google Scholar 

  • Gregorius, H.-R. (1980) The probability of losing an allele when diploid genotypes are sampled. Biometrics 36, 643–52.

    Article  PubMed  CAS  Google Scholar 

  • Gregorius, H.-R. (1991) Gene conservation and the preservation of adaptability. In Species Conservation: A Populational-Biological Approach (A. Seitz and V. Loeschke, eds) pp. 31–47. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Gregorius, H.-R. (1992) Population genetic keys to speciation. Göttingen Res. Notes in For. Genet. 13.

  • Gregorius, H.-R. and Roberds, J.H. (1986) Measurements of genetical differentiation among subpopulations. Theor. Appl. Genet. 71, 826–34.

    Article  Google Scholar 

  • Güge, J. (1960) Der historische Fichtenvorstoß in das oberösterreichische Alpenvorland. Cbl. ges. Forstwes. 77, 1–18.

    Google Scholar 

  • Hahn, W.J. and Grifo, F.T. (1996) Molecular markers in plant conservation genetics. In The Impact of Plant Molecular Genetics (B.W.S. Sobral, ed.) pp. 114–36. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Hall, P., Walker, S. and Bawa, K. (1996) Effect of forest fragmentation on genetic diversity and mating system in a tropical tree, Pithecellobium elegans. Conserv. Biol. 10, 757–68.

    Article  Google Scholar 

  • Hamilton, M.B. (1994) Ex situ conservation of wild plant species: time to re-assess the genetic assumptions and implication of seed banks. Conserv. Biol. 8, 39–49.

    Article  Google Scholar 

  • Hamrick, J.L., Godt, M.J.W. and Sherman-Broyles, S.L. (1992) Factors influencing levels of genetic diversity in woody plants. New Forests 6, 95–124.

    Article  Google Scholar 

  • Hattemer, H.H. (1995) Concepts and requirements in the conservation of forest genetic resources. For. Genet. 2, 125–34.

    Google Scholar 

  • Heinze, B. (1997) A PCR marker for a Populus deltoides allele and its use in studying introgression with native European Populus nigra. Belg. Journ. Bot. (in press).

  • Hernandez, C.M. and Crossa, J. (1993) A program for estimating the optimum sample size for germplasm conservation. J. Hered. 84, 84–6.

    Google Scholar 

  • Isabel, N., Tremblay, L., Michaud, M., Tremblay F.M. and Bousquet, J. (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B.S.P. Theor. Appl. Genet. 86, 81–7.

    Article  CAS  Google Scholar 

  • Isabel, N., Beaulieu, J. and Bousquet, J. (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc. Natl. Acad. Sci. USA 92, 6369–73.

    Article  PubMed  CAS  Google Scholar 

  • Jelinski, D.E. and Cheliak, W.M. (1992) Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape. Amer. J. Bot. 79, 728–36.

    Article  Google Scholar 

  • Karhu, A., Hurme, P., Karjalainen, M., Karvonen, P., Kärkkäinen, K., Neale, D. and Savolainen (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor. Appl. Genet. 93, 215–21.

    Article  CAS  Google Scholar 

  • Keil, M. and Griffin, A.R. (1994) Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theor. Appl. Genet. 89, 442–50.

    Article  CAS  Google Scholar 

  • Keim, P., Paige, K.N., Witham, Th. and Larck, K.L. (1989) Genetic analysis of an interspecific hybrid swarm of Populus: Occurrence of unidirectional introgression. Genetics 123, 557–65.

    PubMed  CAS  Google Scholar 

  • Khasa, P.D. and Dancik, B.P. (1996) Rapid identification of white-Engelmann spruce species by RAPD markers. Theor. Appl. Genet. 92, 46–52.

    Article  CAS  Google Scholar 

  • Kim, Z.-S. and Hattemer, H.H. (eds) (1994) Conservation and Manipulation of Genetic Resources in Forestry. Seoul, Korea: Kwang Moon Kag Publishing.

    Google Scholar 

  • Kim, Z.-S., Yi, C.-H. and Lee, S.-W. (1994) Genetic variation and sampling strategy for conservation in Pinus species. In Conservation and Manipulation of Genetic Resources in Forestry (Z.-S. Kim and H.H. Hattemer, eds) pp. 294–321. Seoul, Korea: Kwang Moon Kag Publishing.

    Google Scholar 

  • Konnert, M. and Bergmann, F. (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Pl. Syst. Evol. 196, 19–30.

    Article  Google Scholar 

  • Kostia, S., Varvio, S.L., Vakkari, P. and Pulkinen, P. (1995) Microsatellite sequences in Pinus sylvestris. Genome 38, 1244–8.

    PubMed  CAS  Google Scholar 

  • Kremer, A., Petit, R., Zanetto, A., Fougère, A., Ducousso, A., Wagner, D. and Chauvin, C. (1991) Nuclear and organelle gene diversity in Quercus robur and Q. petrea. In Genetic Variation in European Populations of Forest Trees (G. Müller-Starck and M. Ziehe, eds) pp. 141–66. Frankfurt a.M, Germany: Sauerländer's Verlag.

    Google Scholar 

  • Krusche, D. and Geburek, Th. (1991) Conservation of forest gene resources as related to sample size. For. Ecol. Manage. 19, 145–50.

    Article  Google Scholar 

  • Lagercrantz, U. and Ryman, N. (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozyme variation. Evolution 44, 38–53.

    Article  Google Scholar 

  • Lashermes, P., Trouslot, P., Anthony, F., Combes, M.C. and Charrier, A. (1996) Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87, 59–64.

    Article  CAS  Google Scholar 

  • Lawrence, M.J., Marshall, D.F. and Davies, P. (1995) Genetics of genetic conservation. I. Sample size when collecting germplasm. Euphytica 84, 89–99.

    Article  Google Scholar 

  • Ledig, F.T. (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63, 87–108.

    Google Scholar 

  • Ledig, F.T. and Conkle, M.T. (1983) Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex. Carr.). Evolution 37, 79–85.

    Article  CAS  Google Scholar 

  • Lewontin, R.C. (1974) The Genetic Basis of Evolutionary Change. New York, USA: Columbia University Press.

    Google Scholar 

  • Li, P., MacKay, J. and Bousquet, J. (1992) Genetic diversity in Canadian Hardwoods: implications for conservation. For. Chron. 86, 709–19.

    Google Scholar 

  • Liu, Z. and Furnier, G.R. (1993) Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor. Appl. Genet. 87, 97–105.

    CAS  Google Scholar 

  • Loveless, M.D. (1992) Isozyme variation in tropical trees: patterns of genetic organization. New Forests 6, 67–94.

    Article  Google Scholar 

  • Lynch, M. and Milligan, B. (1994) Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3, 91–9.

    PubMed  CAS  Google Scholar 

  • Marshall, D.R. (1990) Crop genetic resources: Current and emerging issues. In Plant Population Genetics, Breeding, and Genetic Resources (A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds) pp. 367–88. Sunderland, USA: Sinauer Associates.

    Google Scholar 

  • Marshall, D.R. and Brown, A.H.D. (1975) Optimum sampling strategies in genetic conservation. In Crop Genetic Resources for Today and Tomorrow (O.H. Frankel and J.G. Hawkes, eds) pp. 53–80, Cambridge, UK: Cambridge Univ. Press.

    Google Scholar 

  • Millar, C.I. and Marshall, K.A. (1991) Allozyme variation of Port-Orford-cedar (Chamaecyparis lawsoniana): implications for genetic conservation. For. Sci. 37, 1060–77.

    Google Scholar 

  • Millar, C.I. and Westfall, R.D. (1992) Allozyme markers in forest genetic conservation. New Forests 6, 347–71.

    Article  Google Scholar 

  • Mistretta, O. (1994) Genetics of species re-introductions: applications of genetic analysis. Biodivers. Conserv. 3, 184–90.

    Article  Google Scholar 

  • Moran, G.F. (1992) Patterns of genetic diversity in Australian tree species. New Forests 6, 49–66.

    Article  Google Scholar 

  • Mosseler, A. (1992) Life history and genetic diversity in red pine: implication for gene conservation in forestry. For. Chron. 68, 701–8.

    Google Scholar 

  • Müller-Starck, G. (1991) Survey of genetic variation as inferred from enzyme gene markers. In Genetic Variation in European Populations of Forest Trees (G. Müller-Starck and M. Ziehe, eds) pp. 20–37. Frankfurt a.M., Germany: Sauerländer's Verlag.

    Google Scholar 

  • Müller-Starck, G. (1995) Genetic variation in high elevated populations of Norway spurce (Picea abies (L.) Karst.) in Switzerland. Silvae Genet. 44, 356–62.

    Google Scholar 

  • Paule, L. (1995) Gene conservation in European beech (Fagus sylvatica L.). For. Genet. 2, 161–70.

    Google Scholar 

  • Peters, G.M., Lonie, J.S. and Moran, G.F. (1990) The breeding system, genetic diversity, and pollen sterility in Eucalyptus pulverulenta, a rare species with small distinct populations. Aust. J. Bot. 38, 559–70.

    Article  Google Scholar 

  • Prober, S.M., Tompkins, C., Moran, G.F. and Bell, J.C. (1990) The conservation genetics of Eucalyptus paliformis L. Johnson et Blaxell and E. parvifolia Cambage, two rare species from south-eastern Australia. Aust. J. Bot. 38, 79–95.

    Article  Google Scholar 

  • Roath, W.W., Pomeroy, J.S. and Widrlechner, M.P. (1988) Effects of sunflower (Helianthus annuus) pollen storage conditions on pollen viability and progeny Mdh1 allelic frequency. Proc. 12th Sunflower Conf. 2, pp. 331–6.

  • Rogers, G.M. (1996) Aspects of ecology and conservation of the threatened tree Olearia hectorii in New Zealand. New Zeal. J. Bot. 34, 227–40.

    Google Scholar 

  • Rowntree, P.R. (1990) Predicted climate changes under ‘greenhouse-gas’ warming. In Climate Change and Plant Genetic Resources (M. Jackson, B.V. Ford-Lloyd and M.L. Parry, eds) pp. 18–33. London, UK: Belhaven Press.

    Google Scholar 

  • Schnabel, A. and Hamrick, J.L. (1990) Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Syst. Bot. 15, 240–51.

    Article  Google Scholar 

  • Schütt, P. (1996) Bäume: Geheimnisvolle, mißhandelte Lebewesen. Mitt. Dtsch. Dendrol. Ges. 82, 11–14.

    Google Scholar 

  • Smith, D.N. and Devey, M.E. (1994) Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37, 977–83.

    PubMed  CAS  Google Scholar 

  • Storfer, A. (1996) Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Tree 11, 343–8.

    Google Scholar 

  • Sutton, B.C.S., Pritchard, S.C., Gawley, J.R., Newton, C.H. and Kiss, G.H. (1994) Analysis of sitka spruce — interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Can. J. For. Res. 24, 278–85.

    Google Scholar 

  • Szmidt, A.E., El-Kassaby, Y.A., Sigurgeirsson, A., Aldèn, T., Lindgren, D. and Hällgren, J.-E. (1988) Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Theor. Appl. Genet. 76, 841–5.

    Article  CAS  Google Scholar 

  • Szmidt, A.E., Wang, X. and Lu, M.Z. (1996) Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 76, 412–20.

    CAS  Google Scholar 

  • United Nations Environment Programme (UNEP) (1992) Convention on Biological Diversity, 5 June 1992, UNEP/Bio.Div./CONF./L.2, Na. 92-7807.

  • Ven, W. van de and McNicol, R.J. (1995) The use of RAPD markers for the identification of Sitka spruce (Picea sitchensis) clones. Heredity 75, 126–32.

    Google Scholar 

  • Vicario, F., Vendramin, G.G., Rossi, P., Liò, P. and Giannini, R. (1995) Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theor. Appl. Genet. 90, 1012–18.

    Article  CAS  Google Scholar 

  • Volkaert, H. (1995) Polymorphic DNA sequences in Larix spp. and their use for paternity analysis. PhD thesis, University of Maine, USA.

    Google Scholar 

  • Wagner, D.B., Govindaraju, D.R. and Dancik, B.P. (1988) Chloroplast DNA polymorphism in a sympatric region. In Molecular Genetics in Forest Trees (W. Cheliak and A.C. Yapa, eds) pp. 75–8. Petawawa National Forestry Institute, Information Rep. PI-X-80, Canada.

    Google Scholar 

  • Wagner, D.B., Sun, Z.-X., Govindaraju, D.R. and Dancik, B.P. (1991) Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana-Pinus contorta sympatric region. Amer. Nat. 138, 156–70.

    Article  Google Scholar 

  • Watano, Y., Imazu, M. and Shimizu, T. (1995) Chloroplast DNA typing by PCR-SSCP in the Pinus pumila-P. parviflora var. pentaphylla complex (Pinaceae). J. Plant Res. 108, 493–9.

    Article  CAS  Google Scholar 

  • Wheeler, N.C. and Guries, R.P. (1987) A quantitative measure of introgression between lodgepole and jack pines. Can. J. Bot. 65, 1876–85.

    Google Scholar 

  • Wheeler, N.C. and Jech, K.S. (1992) The use of electrophoretic markers in seed orchard research. New Forests 6, 311–28.

    Article  Google Scholar 

  • Yazdani, R., Muona, O., Rudin, D. and Szmidt, A.E. (1985) Genetic structure of a Pinus sylvestris L. seed-stand and naturally regenerated understory. For. Sci. 31, 430–6.

    Google Scholar 

  • Yeh, F.C. and Arnott, J.T. (1986) Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Can. J. For. Res. 16, 791–8.

    Google Scholar 

  • Yeh, F.C., Chong, D.K.X. and Yang, R.-C. (1995) RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx.) from Alberta. J. Hered. 86, 454–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GEBUREK, T. Isozymes and DNA markers in gene conservation of forest trees. Biodiversity and Conservation 6, 1639–1654 (1997). https://doi.org/10.1023/A:1018330906758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018330906758

Navigation