Skip to main content
Log in

The Lipid Layer: The Outer Surface of the Ocular Surface Tear Film

  • Published:
Bioscience Reports

Abstract

The outer layer of the tear film—the lipid layer—has numerous functions. It is a composite monolayer composed of a polar phase with surfactant properties and a nonpolar phase. In order to achieve an effective lipid layer, the nonpolar phase, which retards water vapor transmission, is dependent on a properly structured polar phase. Additionally, this composite lipid layer must maintain its integrity during a blink. The phases of the lipid layer depend on both lipid type as well as fatty acid and alcohol composition for functionality. Surprisingly, the importance of the composition of the aqueous layer of the tear film in proper structuring of the lipid layer has not been recognized. Finally, lipid layer abnormalities and their relationship to ocular disease are beginning to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ali, S., Smaby, J. M., Brockman, H. L., and Brown, R. E. (1994) Cholesterol's interfacial interactions with galactosylceramides. Biochemistry. 33: 2900–2906.

    PubMed  Google Scholar 

  • Berman, E. R. (1991) Biochemistry of the Eve. Plenum Press, New York.

    Google Scholar 

  • Blume, A. (1979) A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta 557: 32–44.

    PubMed  Google Scholar 

  • Brockman, H. (1994) Dipole potential of lipid membranes. Chem. Phys. Lipids 73: 57–79.

    PubMed  Google Scholar 

  • Bunow, M. R. and Levin, I. W. (1988) Phase behavior of cerebroside and its fractions with phosphatidylcholines: calorimetric studies. Biochim. Biophys. Acta 939: 577–586.

    PubMed  Google Scholar 

  • Cevc, G., Fenzl, W., and Sigl, L. (1990) Surface-induced X-ray reflection visualization of membrane orientation and fusion into multi-bilayers. Science 249: 1161–1163.

    Google Scholar 

  • Duzgunes, N., Straubinger, R. M., Baldwin, P. A., Friend, D. S., and Papahadjopoulos, D. (1985) Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 24: 3091–3098.

    PubMed  Google Scholar 

  • Ellingham, R. B., Berry, M., Stevenson, D., and Corfield, A. P. (1999) Secreted human conjunctival mucus contains MUC5AC glycoforms. Glycobiology 9: 1181–1189.

    PubMed  Google Scholar 

  • Flach, C. R., Brauner, J. W., and Mendelsohn, R. (1993). Calcium ion interactions with insoluble phospholipid monolayer films at the A/W interface. External reflection-absorption IR studies. Biophys. J. 65: 1994–2001.

    PubMed  Google Scholar 

  • Ginsberg, L. and Gershfeld, N. L. (1985) Phospholipid surface bilayers at the air-water interface II. Water permeability of dimyristoylphosphatidylcholine surface bilayers Biophys. J. 47: 211–215.

    PubMed  Google Scholar 

  • Glasgow, B. J., Marshall, G., Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., and Knobler, C. M. (1999) Tear lipocalins: potential lipid scavengers for the corneal surface. Invest. Ophthalmol. Vis. Sci. 40: 3100–3107.

    PubMed  Google Scholar 

  • Greiner, J. V., Glonek, T., Korb, D. R., and Leahy, C. D. (1996) Meibomian gland phospholipids. Curr. Eye Res. 15: 371–375.

    PubMed  Google Scholar 

  • Hinderliter, A. K., Huang, J., and Feigenson, G. W. (1994) Detection of phase separation in fluid phosphatidylserine/hosphatidylcholine mixtures. Biophys. J. 67: 1906–1911.

    PubMed  Google Scholar 

  • Huster, D. et al. (1999) Investigation of phospholipid area compression induced by calcium-mediated dextran sulfate interaction. Biophys. J. 77: 879–887.

    PubMed  Google Scholar 

  • Johnston, D. S. and Chapman, D. (1988) The properties of brain galactocerebroside monolayers. Biochim. Biophys. Acta 937: 10–22.

    PubMed  Google Scholar 

  • Kaercher, T., Mobius, D., and Welt, R. (1994) Biophysical behaviour of the infant meibomian lipid layer. Int. Ophthalmol. 18: 15–19.

    PubMed  Google Scholar 

  • Kimizuka, H., Nakahara, T., Uejo, H., and Yamauchi, A. (1967) Cation-exchange properties of lipid films. Biochim. Biophys. Acta 137: 549–556.

    PubMed  Google Scholar 

  • Koiv, A., Mustonen, P., and Kinnunen, P. K. J. (1993) Influence of sphingosine on the thermal phase behaviour of neutral and acidic phospholipid liposomes. Chem. Phys. Lipids 66: 123–134.

    PubMed  Google Scholar 

  • Liu, F. and Chong, P. L.-G. (1999) Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Biochemistry 38: 3867–3873.

    PubMed  Google Scholar 

  • Maggio, B. (1999) Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers. J. Lipid Res. 40: 930–939.

    PubMed  Google Scholar 

  • Maloney, K. M. and Grainger, D. W. (1993) Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chem. Phys. Lipids 65: 31–42.

    PubMed  Google Scholar 

  • Maloney, K. M., Grandbois, M., Grainger, D. W., Salesse, C., Lewis, K. A., and Roberts, M. F. (1995) Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/;water interface. Biochim. Biophys. Acta 1235: 395–405.

    PubMed  Google Scholar 

  • Marsh, D. (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286: 183–223.

    PubMed  Google Scholar 

  • Mathers, W. D. and Daley, T. E. (1996) Tear flow and evaporation in patients with and without dry eye. Ophthalmology 103: 664–669.

    PubMed  Google Scholar 

  • Mathers, W. D. and Lane, J. A. (1998). Meibomian gland lipids, evaporation, and tear film stability. In: Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, Sullivan, D. A., Dartt, D. A., and Meneray, M. A. (eds.), Plenum Press, New York. Adû. Exp. Med. Biol. 438: 349–360.

    Google Scholar 

  • McCulley, J. P. and Shine, W. E. (1997) A compositional based model for the tear film lipid layer. Tr. Am. Opth. Soc. 95: 79–93.

    Google Scholar 

  • McIntosh, T. J. (1996) Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem. Phys. Lipids 81: 117–131.

    PubMed  Google Scholar 

  • Mori, A., Oguchi, Y., Okusawa, Y., Ono, M., Fujishima, H., and Tsubota, K. (1997) Use of high-speed, high-resolution thermography to evaluate the tear film layer. Am. J. Ophthalmol. 124: 729–735.

    PubMed  Google Scholar 

  • Nagyova, B. and Tiffany, J. M. (1999) Components responsible for the surface tension of human tears. Curr. Eye Res. 19: 4–11.

    PubMed  Google Scholar 

  • Nicolaides, N., Kaitaranta, J. K., Rawdah, T. N., Macy, J. I., Boswell, F. M. III, and Smith, R. E. (1981). Meibomian gland studies: comparison of steer and human lipids. Invest. Opthalmol. Vis. Sci. 20: 522–536.

    Google Scholar 

  • Oldani, D., Hauser, H., Nicholas, B. W., and Phillips, M. C. (1975) Monolayer characteristics of some glycerides at the air-water interface. Biochim. Biophys. Acta 382: 1–9.

    PubMed  Google Scholar 

  • Pieroni, G. and Verger, R. (1979) Hydrolysis of mixed monomolecular films of triglyceride/;lecithin by pancreatic lipase. w 254: 10090–10094.

    Google Scholar 

  • Prats, M., Teissie, J., and Tocanne, J.-F. (1986) Lateral proton conduction at lipid-water interfaces and its implications for the chemiosmotic-coupling hypothesis. Nature 322: 756–758.

    Google Scholar 

  • Rand, R. P. and Parsegian, V. A. (1989) Hydration forces between phospholipid bilayers Biochim. Biophys. Acta 988: 351–376.

    Google Scholar 

  • Schindler, H. (1989) Planar lipid-protein membranes: strategies of formation and of detecting dependences of ion transport functions on membrane conditions. In: Methods in Enzymology, Biomembranes, Part R, Transport Theory: Cells and Model Membranes, 171, Fleischer, S. and Fleischer, B., (eds.), Academic Press, Harcourt Brace Janovich, New York, pp. 225–253.

    Google Scholar 

  • Seimiya, T. and Ohki, S. (1973) Ionic structure of phospholipid membranes, and binding of calcium ions. Biochim. Biophys. Acta. 298: 546–561.

    PubMed  Google Scholar 

  • Seimiya, T., Ashida, M., Hayashi, M., Muramatsu, T., and Hara, I. (1978) Hydrogen bond among the ionic groups of ampholytic phospholipid. Chem. Phys. Lipids 21: 69–76.

    Google Scholar 

  • Shine, W. E. and McCulley, J. P. (1991) The role of cholesterol in chronic blepharitis. Invest. Ophthalmol. Vis. Sci. 32: 2272–2280.

    PubMed  Google Scholar 

  • Shine, W. E. and McCulley, J. P. (1993) role of wax ester fatty alcohols in chronic blepharitis. Invest. Opthalmol. Vis. Sci. 34: 3515–3521.

    Google Scholar 

  • Shine, W. E. and McCulley, J. P. (1996) Meibomian gland triglyceride fatty acid differences in chronic blepharitis patients. Cornea 15: 340–346.

    PubMed  Google Scholar 

  • Shine, W. E. and McCulley, J. P. (1998) Keratoconjunctivitis sicca associated with meibomian secretion polar lipid abnormality. Arch. Ophthalmol. 116: 849–852.

    PubMed  Google Scholar 

  • Smaby, J. M. and Brockman, H. L. (1987a) Acyl unsaturation and cholesteryl ester miscibility in surfaces. Formation of lecithin-cholesteryl ester complexes. J. Lipid Res. 28: 1078–1087.

    PubMed  Google Scholar 

  • Smaby, J. M. and Brockman, H. L. (1987b) Regulation of cholesteryl oleate and triolein miscibility in monolayers and bilayers. J. Biol. Chem. 262: 8206–8212.

    PubMed  Google Scholar 

  • Somerharju, P., Virtenen, J. A., and Cheng, K. H. (1999) Lateral organization of membrane lipids. The superlattice view. Biochim. Biophys. Acta 1440: 32–48.

    PubMed  Google Scholar 

  • Speelmans, G., Staffhorst, R. W. H. M., and De Kruiff, B. (1997) The anionic phospholipid-mediated membrane interaction of the anti-cancer drug doxorubicin is enhanced by phosphatidylethanolamine compared to other zwitterionic phospholipids. Biochemistry 36: 8657–8662.

    PubMed  Google Scholar 

  • Steffan, G., Wulff, S., and Galla, H.-J. (1994) Divalent cation-dependent interaction of sulfated polysaccharides with phosphatidylcholine and mixed phosphatidylcholine_phosphatidylglycerol liposomes. Chem. Phys. Lipids 74: 141–150.

    PubMed  Google Scholar 

  • Stoffel, W., Pruss, H. D., and Sticht, G. (1974) Monolayer studies on derivatives of sphinganine and 4tsphingenine. Chem. Phys. Lipids 13: 466–480.

    Google Scholar 

  • Subbaiah, P. V., Subramanian, V. S., and Wang, K. (1999) Novel physiological function of sphingomyelin in plasma. Inhibition of lipid peroxidation in low density lipoproteins. J. Biol. Chem. 274: 36409–36414.

    PubMed  Google Scholar 

  • Tiffany, J. M. (1987) The lipid secretion of the meibomian glands. Adv. Lipid Res. 22: 1–62.

    PubMed  Google Scholar 

  • Tolle, A., Meier, W., Greune, G., Rudiger, M., Hofmann, K. P., and Rustow, B. (1999) Plasmalogens reduce the viscosity of a surfactant-like phospholipid monolayer. Chem. Phys. Lipids 100: 81–87.

    Google Scholar 

  • Virtanen, J. A., Cheng, K. H., and Somerharju, P. (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc. Natl. Acad. Sci. USA 95: 4964–4969.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCulley, J.P., Shine, W.E. The Lipid Layer: The Outer Surface of the Ocular Surface Tear Film. Biosci Rep 21, 407–418 (2001). https://doi.org/10.1023/A:1017987608937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017987608937

Navigation