Skip to main content
Log in

Thermal conductivity of dense and porous yttria-stabilized zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal conductivity of dense and porous yttria-stabilized zirconia (YSZ) ceramics has been measured as a function of temperature in the range 25 to 1000 °C. The dense specimens were either single crystal (8 mol% YSZ) or sintered polycrystalline (3 mol% and 8 mol% YSZ). The porous specimens (3 mol% YSZ) were prepared using the “fugitive” polymer method, where different amounts of polymer spheres (of two different average sizes) were included in the starting powders before sintering. This method yielded materials with uniformly distributed porosities with a tight pore-size distributions. A theory has been developed to describe the thermal conductivity of dense YSZ as a function of temperature. This theory considers the reduction in the intrinsic thermal conductivity due scattering of phonons by point defects (oxygen vacancies and solute) and by the “hopping” of oxygen vacancies. It also considers an increase in the effective thermal conductivity at high temperatures due to radiation. This theory captures the essential features of the observed thermal conductivity. The Maxwell theory has been used to analyze the thermal conductivity of the porous materials. An adequate agreement was found between the theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley Interscience, New York, 1976).

    Google Scholar 

  2. R. L. Jones, in “Metallurgical and Ceramic Coatings,” edited by K. H. Stern (Chapman & Hall, London, 1996) p. 194.

    Google Scholar 

  3. R. J. Bratton and S. K. Lau, in “Advances in Ceramics: Science and Technology of Zirconia,” Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, USA, 1981) p. 226.

    Google Scholar 

  4. K. D. Sheffler and D. K. Gupta, J. Eng. Gas Turbines and Power (Trans. ASME) 110 (1988) 605.

    Google Scholar 

  5. S. M. Meier, D. K. Gupta and K. D. Sheffler, J. Metals 43 (1991) 50.

    Google Scholar 

  6. R. C. Novak, A. P. Matarese, R. P. Huston, A. J. Scharman and T. M. Yonushonis, Mater. Manuf. Processes 7 (1992) 15.

    Google Scholar 

  7. H. E. Eaton, J. R. Linsey and R. B. Dinwiddie, in “Thermal Conductivity 22,” edited by T. W. Tong (Technomic, Lancaster, PA, USA, 1994) p. 289.

    Google Scholar 

  8. R. Mcphearson, Thin Solid Films 112 (1984) 89.

    Google Scholar 

  9. J.-M. Dorvaux, O. Lavigne, R. Mevrel, M. Poulain, Y. Renollet and C. Rio, in Proceedings of the 85th Meeting of the AGARD Structures and Materials Panel, Neuilly-sur-Seine, France, 1998, Vol. R-823, edited NATO and AGARD, p. 13.

  10. D. P. H. Hasselman, L. F. Johnson, L. D. Bentsen, R. Syed, H. L. Lee and M. V. Swain, Am. Ceram. Soc. Bull. 66 (1987) 799.

    Google Scholar 

  11. G. E. Youngblood, R. W. Rice and R. P. Ingel, J. Amer. Ceram. Soc. 71(4) (1988) 255.

    Google Scholar 

  12. S. Raghavan, H. Wang, R. B. Dinwiddie, W. D. Porter and M. J. Mayo, Scripta Mater. 39(8) (1998) 1119.

    Google Scholar 

  13. P. G. Klemens, in “Thermal Conductivity 23,” edited by K. E. Wils, R. B. Dinwiddie and R. S. Graves (Technomics Publishing Co., Lancaster, PA, USA, 1996) p. 209.

    Google Scholar 

  14. Idem., in “Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials,” edited by E. Ma, B. Fultz, R. Shull, J. E. Morral and P. Nash (TMS, Warrendale, PA, USA, 1997) p. 87.

    Google Scholar 

  15. J. Zhao and M. P. Harmer, J. Amer. Ceram. Soc. 70 (1988) 449.

    Google Scholar 

  16. E. C. M. Pennings and W. Grellner, ibid. 72 (1989) 1268.

    Google Scholar 

  17. R. E. Taylor and K. D. Maglic, in “Compendium of Thermophysical Property Measurement Methods,” Vol. 1, edited by K. D. Maglic, A. Cezairliyan and V. E. Peletsky (Plenum Press, New York, NY, USA) 1984.

    Google Scholar 

  18. K. D. Maglic and R. E. Taylor, in “Compendium of Thermophysical Property Measurement Methods,” Vol. 2, edited by K. D. Maglic, A. Cezairliyan and V. E. Peletsky (Plenum Press, New York, NY, USA) 1992.

    Google Scholar 

  19. P. G. Klemens, in “Thermal Conductivity,” Vol. 1, edited by R. P. Tyne (Academic Press, London, UK, 1969) p. 1.

    Google Scholar 

  20. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, “Thermophysical Properties of Matter: Vol. 2, Thermal Conductivity” (Plenum, New York, NY, USA, 1970).

    Google Scholar 

  21. P. G. Klemens, Phys. Rev. 119 (1960) 507.

    Google Scholar 

  22. Idem., Physica B 263-264 (1999) 102.

    Google Scholar 

  23. W. M. Rogers and R. L. Powell, NBS Circular 595 (1958) 1.

    Google Scholar 

  24. D. L. Wood and K. Nassau, Applied Optics 21 (1982) 2978.

    Google Scholar 

  25. J. E. Parrott and A. D. Stuckes, “Thermal Conductivity of Solids” (Pion Ltd., London, UK, 1975).

    Google Scholar 

  26. J. C. Maxwell, “A Treatise on Electricity and Magnetism” (Clarendon Press, Oxford, UK, 1904).

    Google Scholar 

  27. P. G. Klemens, High Temps.-High Press. 23 (1991) 241.

    Google Scholar 

  28. K. W. Schlichting, N. P. Padture and P. G. Klemens, in “Thermal Conductivity 25,” edited by C. Uher and D. Morelli (Technomic, Lancaster, PA, USA, 2000) p. 162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlichting, K.W., Padture, N.P. & Klemens, P.G. Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science 36, 3003–3010 (2001). https://doi.org/10.1023/A:1017970924312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017970924312

Keywords

Navigation