Skip to main content
Log in

Anodic behaviour of carbon materials in NaCl saturated NaAlCl4 fused electrolyte at low temperatures: A cyclic voltammetric study

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic behaviour of compacted graphite, graphite powder, glassy carbon and reticulated vitreous carbon electrodes in basic sodium chloroaluminate melt in the temperature range 428–573 K was studied using cyclic voltammetry. Chlorine evolution (> + 2.1 V vs Al) alone was the predominant reaction on the compact glassy carbon and fresh RVC electrodes. On compacted graphite, chlorine-assisted chloroaluminate intercalation was found to be a competitive process to the chlorine evolution. At high sweep rates, intercalation/deintercalation near the graphite lattice edges occur faster than chlorine evolution. Subsequent intercalation, however, is a slow process. Chlorine evolution predominates at higher temperatures and at higher anodic potentials. On graphite powders, a more reversible free radical chlorine adsorption/desorption process also occurs in the potential region below chlorine evolution. The process occurs at the grain boundaries, edges and defects of the graphite powder material. Intercalation/deintercalation processes are mainly responsible for the disintegration of graphitic materials in low-temperature chloroaluminate melts. Repeated intercalation/deintercalation cycles result in the irreversible transformation of the electrode surface and electrode characteristics. The surface area of the electrode is increased substantially on cycling. Electrode materials and operating conditions suitable for chlorine generation, intercalation/deintercalation and chlorine adsorption/desorption and power sources based on these processes are identified in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Patent, 1 200 103 (1967).

  2. Yashuhiko Ito and Shiro Yoshizawa, Some new molten salt electrolytic processes, in G. Mamantov and J. Braunstein (Eds), 'Advances in Molten Salt Chemistry', (Plenum, New York, 1981), p.391.

    Google Scholar 

  3. K.S. Mohandas, N. Sanil and P. Rodriguez, Proceedings of the National Symposium on Electrochemistry in Nuclear Technology (Kalpakkam, 1998), pp. 163–168.

  4. H. Wendt, A. Khalil and C.E. Padberg, J. Appl. Electrochem. 21 (1991) 929.

    Google Scholar 

  5. G.L. Holleck, J. Electrochem. Soc. 119 (1972) 1158.

    Google Scholar 

  6. A.J. Bard, 'Encyclopedia of Electrochemistry of the Elements' (Marcel Dekker, Inc., New York, 1976) vol. X, p. 263.

    Google Scholar 

  7. H. Wendt, S. Dermeik and A. Ziogas, Werkst Korros. 41 (1990) 457–463.

    Google Scholar 

  8. K.S. Mohandas, PhD thesis, University of Madras, January (2001).

  9. S. Maximovitch, M. Levart, M. Fouletier, N. Nguyen and G. Bronoel, J. Power Sources 3 (1978) 215–225.

    Google Scholar 

  10. K.S. Mohandas, N. Sanil, Tom Mathews and P. Rodriguez, Metall. Mater. Trans. B, in press.

  11. W. Rudorff, in 'Advances in Inorganic Chemistry and Radiochemistry' vol. 1, (1959), p. 254.

    Google Scholar 

  12. W. Rudorff and A. Landel, Z. Anorg. Allg. Chem. 293 (1958) 327.

    Google Scholar 

  13. M.L. Dzurus and G.R. Henning, J. Amer. Chem. Soc. 79 (1957) 1051.

    Google Scholar 

  14. B. Bach and A.R. Ubbelhode, Proc. R. Soc. Lond. A 325 (1971) 437.

    Google Scholar 

  15. J.G. Hooley, Carbon 11 (1973) 225.

    Google Scholar 

  16. R.C. Croft, J. Appl. Chem. (Lond.) 2 (1952) 557.

    Google Scholar 

  17. J.G. Hooley and P.T. Hough, Carbon 16 (1978) 221.

    Google Scholar 

  18. Baikar, E. Habegger, V.K. Sharma and W. Richard, Carbon 19 (1981) 329.

    Google Scholar 

  19. Baikar, E. Habegger and R. Schlogl, Ber. Bunsenges. Phys. Chem. 89 (1985) 530.

    Google Scholar 

  20. M. Fouletier and M. Armand, Carbon 17 (1979) 427.

    Google Scholar 

  21. J.G. Hooley, Carbon 18 (1980) 83.

    Google Scholar 

  22. E. Stumpp, Mater. Sci. Eng. 31 (1977) 53.

    Google Scholar 

  23. D.K. Gosser, Jr, 'Cyclic Voltammetry — Simulation and Analysis of Reaction Mechanisms' (VCH, New York, 1996), p. 43.

    Google Scholar 

  24. H. Thiele, Z. Electrochem. 40 (1934) 26.

    Google Scholar 

  25. K. Kinoshita, 'Carbon: Electrochemical and Physiochemical Properties' (J. Wiley & Sons, New York, 1988).

    Google Scholar 

  26. J.J. Werth, US Patent 3 847 667 (1974).

  27. P. Beck, H. Junge and H. Krohn, Electrochim. Acta 26 (1981) 799.

    Google Scholar 

  28. L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 15 (1970) 941.

    Google Scholar 

  29. L.J.J. Janssen, Electrochim. Acta 19 (1974) 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohandas, K., Sanil, N., Noel, M. et al. Anodic behaviour of carbon materials in NaCl saturated NaAlCl4 fused electrolyte at low temperatures: A cyclic voltammetric study. Journal of Applied Electrochemistry 31, 997–1007 (2001). https://doi.org/10.1023/A:1017966316057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017966316057

Navigation