Skip to main content
Log in

Inward Matrix Product Algebra and Calculus as Tools to Construct Space–Time Frames of Arbitrary Dimensions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this study, inward matrix products are used to construct a theoretical framework where new space-time structures of arbitrary dimensions can be built up. The mathematical theory, based on inward matrix algebra, allows the derivation and integration of vectors and matrices composed by well-behaved functional elements. Every function element is associated at least to a linearly independent variable connected to such an element. As examples are discussed first the construction of general density functions, followed by the reformulation of the time-dependent Schrödinger equation. A general N-dimensional classical universe is presented, where not only space but also time, mass, energy and other related physical properties acquire an arbitrary hypermatrix structure. In this hypothetical framework scalar values related to physical quantities can be alternatively associated to cosine-like measures in the chosen spaces. Finally, simple problems on special relativity are briefly discussed from this point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Sen and R. Carbo-Dorca, J. Mol. Struct. (Theochem) 501–502 (2000) 173–176.

    Google Scholar 

  2. R. Carbo-Dorca, E. Besalu and X. Girones, Extended density functions, Adv. Quant. Chem. 38(2001) 1–63.

    Google Scholar 

  3. R. Carbó-Dorca, Quantum Quantitative Structure–Activity Relationships (QQSAR): A comprehensive discussion based on inward matrix products, employed as a tool to find approximate solutions of strictly positive linear systems and providing a QSAR–Quantum Similarity Measures connection, in: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona (11–14 September 2000) pp. 1–31.

  4. A Fortran 95 connection: LF95 Language Reference, Lahey Computer Systems (Incline Village, NV, 1998) http://www.lahey.com

  5. R. Carbó-Dorca, Int. J. Quant. Chem. 79(2000) 163–177.

    Google Scholar 

  6. R. Carbó-Dorca, J. Math. Chem. 27 (2000) 357–376.

    Google Scholar 

  7. R. Carbó-Dorca, J. Mol. Struct. (Theochem) 537(2001) 41–54.

    Google Scholar 

  8. I.M. Vinogradov (ed.), Enciclopaedia of Mathematics, Vol. 4(Kluwer, Dordrecht, 1989).

    Google Scholar 

  9. R. Carbo and E. Besalu, Theoretical foundations of quantum similarity, in: Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, ed. R. Carbo (Kluwer Academic Publishers, Amsterdam, 1995) pp. 3–30.

    Google Scholar 

  10. R. Carbo-Dorca, E. Besalu, Ll. Amat and X. Fradera, Quantum molecular similarity measures: Concepts, definitions and applications to QSAR, in: Advances in Molecular Similarity, Vol. 1, eds. R. Carbo-Dorca and P.G. Mezey (JAI Press, London, 1996) pp. 1–42.

    Google Scholar 

  11. R. Carbo-Dorca, Ll. Amat, E. Besalu and M. Lobato, Quantum molecular similarity, in: Advances in Molecular Similarity, Vol. 2, eds. R. Carbo-Dorca and P. G. Mezey (JAI Press, London, 1998) pp. 1–42.

    Google Scholar 

  12. R. Carbo-Dorca, Ll. Amat, E. Besalu, X. Girones and D. Robert, Quantum mechanical origin of QSAR: Theory and applications, J. Mol. Struct. (Theochem) 504, Special Issue on Computational Medicinal Chemistry (2000) 181–228.

    Google Scholar 

  13. R. Carbó-Dorca, Ll. Amat, E. BesalÚ, X. Girones and D. Robert, Quantum molecular similarity: Theory and applications to the evaluation of molecular properties, biological activities and toxicity, in: Fundamentals of Molecular Similarity, eds. R. Carbó-Dorca, X. Gironés and P.G. Mezey (Kluwer Academic/Plenum Publishers, New York, 2001) pp. 187–320.

    Google Scholar 

  14. C. Roos, T. Terlaky and J.-P. Vial, Theory and Algorithms for Linear Optimization (Wiley, New York, 1997).

    Google Scholar 

  15. R.A. Horn and Ch.A. Johnsonm, Matrix Analysis (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  16. R. Carbo and E. Besalu, J. Math. Chem. 1 3 (1993) 331–342.

  17. R. Carbo and E. Besalu, Comput. Chem. 18(1994) 117–126.

    Google Scholar 

  18. R. Carbo and E. Besalu, J. Math. Chem. 18(1995) 37–72.

    Google Scholar 

  19. R. Carbo and E. Besalu, Applications of nested summation symbols to quantum chemistry: Formalism and programming techniques, in: Strategies and Applications in Quantum Chemistry, eds. Y. Ellinger and M. Defranceschi (Kluwer Academic Publishers, Dordrecht, 1996) pp. 229–248.

    Google Scholar 

  20. R. Carbo-Dorca, Fuzzy sets and Boolean tagged sets, vector semispaces and convex sets, quantum similarity measures and ASA density functions, diagonal vector spaces and quantum chemistry, in: Advances in Molecular Similarity, Vol. 2, eds. R. Carbo-Dorca and P.G. Mezey (JAI Press, London, 1998) pp. 43–71.

    Google Scholar 

  21. R. Carbo-Dorca, J. Math. Chem. 22(1997) 143–147.

    Google Scholar 

  22. R. Carbo-Dorca, J. Math. Chem. 23 (1998) 353–364.

    Google Scholar 

  23. R. Carbo-Dorca, J. Math. Chem. 23(1998) 365–375.

    Google Scholar 

  24. R. Carbo-Dorca and E. Besalu, J. Mol. Struct. (Theochem) 451(1998) 11–23.

    Google Scholar 

  25. H. Eyring, J. Walter and G.E. Kimball, Quantum Chemistry (Wiley, New York,1940).

    Google Scholar 

  26. L. Pauling and E.B. Wilson, Jr., Introduction to Quantum Mechanics (Dover, New York, 1985).

    Google Scholar 

  27. G. Joos, Theoretical Physics (Dover Publications, New York, 1986).

    Google Scholar 

  28. G. Stephenson and C.W. Kilmister, Special Relativity for Physicists (Dover, New York, 1986).

    Google Scholar 

  29. G. Wentzel, Quantum Theory of Fields (Interscience Publishers, New York, 1949).

    Google Scholar 

  30. W.D. McComb, The Physics of Fluid Turbulence, Oxford Science Publications (Clarendon Press, Oxford, 2000).

    Google Scholar 

  31. W. Pauli, Theory of Relativity (Dover, New York, 1981).

    Google Scholar 

  32. M. Kriele, Spacetime (Springer Verlag, Berlin, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbó-Dorca, R. Inward Matrix Product Algebra and Calculus as Tools to Construct Space–Time Frames of Arbitrary Dimensions. Journal of Mathematical Chemistry 30, 227–245 (2001). https://doi.org/10.1023/A:1017931905397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017931905397

Navigation