Skip to main content
Log in

Electromagnetism according to geometric algebra: An appropriate and comprehensive formulation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

While the Maxwell’s equations describe the electric and magnetic fields developed by electrically charged particles and/or currents, the Lorentz force law completes the picture of classical electromagnetic theory by defining the force acting on a localised charge (or charge distribution) moving in the field. However, the standard formulation using vector algebra suffers from several inadequacies and unwarranted features. Clifford’s geometric algebra or more specifically space–time algebra, i.e geometric algebra in 4D Minkowski space–time, provides an elegant, compactified and comprehensive description by removing the discrepancies of the earlier formulation. It provides an invariant description, in the appropriate space–time setting, in terms of the combined electromagnetic field without reference to any inertial system. Moreover, using elementary geometric calculus, it facilitates direct analytical introduction of the putative concept of magnetic monopole and renders the equations for both the constituent fields, symmetric and inhomogeneous. In terms of the single space–time force equation, space–time algebra also encapsulates both the Lorentz force equation and the electromagnetic power equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J C Maxwell, Philos. Trans. R. Soc. Lond. 155, 459 (1865)

  2. J D Jackson, Classical electrodynamics, 3rd edn (John Wiley, 1998)

  3. D J Griffiths, Introduction to electrodynamics, 3rd edn (Prentice Hall, 1999)

  4. O Heaviside, Philos. Mag. 27, 324 (1889)

    Article  Google Scholar 

  5. H A Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (Leiden, 1895)

  6. J H Poynting, Philos. Trans. R. Soc. Lond. 175, 343 (1884)

    ADS  Google Scholar 

  7. J W Simmons and M J Guttmann, States, waves and photons: A modern introduction to light (Addison-Wesley, Reading, Massachusetts, 1970)

    Google Scholar 

  8. O Heaviside, Philos. Trans. R. Soc. Lond. A 183, 423 (1893)

    ADS  Google Scholar 

  9. J J Thomson, Recent researches in electricity and magnetism (Oxford Clarendon Press, 1893)

  10. R P Feynman, R B Leighton and M Sands, The Feynman lectures on physics II (Addison-Wesley Pub., London, 1964)

    MATH  Google Scholar 

  11. I Campos and J L Jiménez, Eur. J. Phys. 13, 117 (1992)

    Article  Google Scholar 

  12. D W Sciama, Proc. Roy. Soc. Lond. A 273, 484 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  13. A Chubykalo and V Kuligin, Appl. Phys. Res. 10, 79 (2018)

    Article  Google Scholar 

  14. D Hestenes, Am. J. Phys. 71, 691 (2003); A unified language for mathematics and physics, in: Clifford algebras and their applications in mathematical physics edited by J S R Chisholm and A K Commons (Reidel, Dordrecht/Boston, 1986) p. 1

  15. C Doran and A Lasenby, Geometric algebra for physicists (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  16. T Ivezic, Found. Phys. 35, 1585 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. A Einstein, Ann. der Phys. 322, 891 (1905)

    Article  ADS  Google Scholar 

  18. D Sen and D Sen, https://doi.org/10.13140/RG.2.2.31851.75042(2016)

  19. J Lasenby, A N Lasenby and C J L Doran, Philos. Trans. R. Soc. A 358, 21 (2000)

    Article  ADS  Google Scholar 

  20. M Buchanan, Nature Phys. 7, 442 (2011)

    Article  ADS  Google Scholar 

  21. P Curie, J. de Phys. 3, 393 (1894)

    Google Scholar 

  22. J S Denker, Electromagnetism using geometric algebra versus components, www.av8n.com. (2003)

  23. D Hestenes, Am. J. Phys. 39, 1013 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  24. W E Baylis, Applications of Clifford algebras in physics, in: Lectures on Clifford (geometric) algebras and applications edited by R Abamowicz and G Sobczyk (Birkhäuser, Boston, MA, 2004) p. 91

  25. J M Chappell, S P Drake, C L Seidel, L J Gunn, A Iqbal, A Allison and D Abbott, Proc. IEEE 102, 1340 (2014)

    Article  Google Scholar 

  26. I Bialynicki-Birula and Z Bialynicka-Birula, J. Phys. A 46, 053001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. D Hestenes, Space-time algebra (Gordon and Breach, 1966)

  28. E Noether, Math-Phys. Klasse 2, 235 (1918)

    Google Scholar 

  29. G Manno, J Pohjanpelto and R Vitolo, J. Geom. Phys. 58, 996 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. A Lasenby, C J Doran and S Gull, Found. Phys. 23, 1295 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  31. C Castelnovo, R Moessner and S Sondhi, Nature 451, 42 (2008); S Ladak, D E Read, G K Perkins, L F Cohen and W R Branford, Nature Phys. 6, 359 (2010); A Farhan, M Saccone, C F Petersen, S Dhuey, R V Chopdekar, Y-L Huang, N Kent, Z Chen, M J Alava, T Lippert, A Scholl and S van Dijken, Sci. Adv. 5, eaav6380, 1 (2019)

  32. M Ibison, Proc. AAAS Conf. on Reverse Causation (San Diego, 2006)

  33. T G Vold, Am. J. Phys. 61, 505 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. P Dasgupta, Phys. Teacher 47, 95 (2005); MAC J. Basic Appl. Sci. 2, 29 (2015)

  35. W E Baylis, J Bonenfant, J Derbyshire and J Huschilt, Am. J. Phys. 61, 534 (1993)

    Article  ADS  Google Scholar 

  36. J J Sakurai, Modern quantum mechanics (Addison Wesley, 1994)

  37. D Hestenes, Space-time calculus, https://geocalc.clas.asu.edu (1998)

  38. A Bromborsky, An introduction to geometric algebra and calculus, https://www.scribd.com/document/354134564, Ch. 10, p. 179 (2014)

  39. J F Lindner, Electromagnetism, https://physics.wooster.edu/Lindner/Texts/ Electromagnetism.pdf (2018)

  40. D Hestenes and R G\(\ddot{\rm u}\)rtler, Am. J. Phys. 39, 1028 (1971); D Hestenes, Clifford algebra and the interpretation of quantum mechanics in Clifford algebras and their applications in mathematical physics edited by J S R Chisholm and A K Commons (Reidel, Dordrechtt\(/\)Boston, 1986) p. 321

  41. A A Martins and M J Pinheiro, Phys. Fluids 21, 097103 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Sen.

Appendices

Appendix I: Derivation of \({\mathbf {F}}^{2}\) (\(\langle {\mathbf {F}}^{2}\rangle _{0}, \langle {\mathbf {F}}^{2}\rangle _{2}\) and \(\langle {\mathbf {F}}^{2}\rangle _{4}\))

Since \({\hat{\alpha }}_{j}\,{\hat{\alpha }}_{0}: {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{0}=\delta _{jk}\); \({\hat{\alpha }}_{j}\,{\hat{\alpha }}_{0}: {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{l}=0\) and \({\hat{\alpha }}_{j}\,{\hat{\alpha }}_{k}: {\hat{\alpha }}_{l}\,\hat{\mathbf {\alpha }}_{m}=\delta _{jm}\, \delta _{kl}-\delta _{jl}\,\delta _{km}\), from eq. (24) we get

$$\begin{aligned} \langle {\mathbf {F}}^{2}\rangle _{0}= & {} {\mathbf {F}}:{\mathbf {F}}=(F^{10})^{2}+(F^{20})^{2}\\&+(F^{30})^{2}-\{(F^{23})^{2}+(F^{31})^{2}+(F^{12})^{2}\}\\= & {} {\mathbf {e}}^{2} -c^{2}{\mathbf {b}}^{2}\equiv {\mathbf {e}}^{2} +c^{2}{\mathbf {B}}^{2}. \end{aligned}$$

Again, since \({\hat{\alpha }}_{j}\,{\hat{\alpha }}_{0}\cdot {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{0}={\hat{\alpha }}_{j} \,{\hat{\alpha }}_{k}=-{\hat{\alpha }}_{k}\,{\hat{\alpha }}_{0} \cdot {\hat{\alpha }}_{j}\,{\hat{\alpha }}_{0};\;{\hat{\alpha }}_{j}\, {\hat{\alpha }}_{0}\cdot {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{l}= {\hat{\alpha }}_{l}\,{\hat{\alpha }}_{0}\,\delta _{jk}- {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{0}\,\delta _{jl}=- {\hat{\alpha }}_{k}\,{\hat{\alpha }}_{l}.{\hat{\alpha }}_{j}\, {\hat{\alpha }}_{0}\) and \({\hat{\alpha }}_{j}\,{\hat{\alpha }}_{k}. {\hat{\alpha }}_{l}\,\hat{\mathbf {\alpha }}_{m}={\hat{\alpha }}_{j}\, \hat{\mathbf {\alpha }}_{m}\delta _{kl}-{\hat{\alpha }}_{k}\, \hat{\mathbf {\alpha }}_{m}\delta _{jl}=0\), it follows

$$\begin{aligned} \langle {\mathbf {F}}^{2}\rangle _{2}= & {} {\mathbf {F}}\cdot {\mathbf {F}}\\= & {} F^{10}\,F^{20}\cdot 0+ F^{10}\,F^{30}\cdot 0+F^{20}\,F^{30}\cdot 0\\&+F^{10}\,F^{23}\cdot 0+F^{10}\,F^{31}\cdot 0+F^{10}\, F^{12}\cdot 0\\&+F^{20}\,F^{23}\cdot 0+F^{20}\,F^{31}\cdot 0+F^{20}\,F^{12}\cdot 0\\&+F^{30}\,F^{23}\cdot 0 +F^{30}\,F^{31}\cdot 0+F^{30}\,F^{12}\cdot 0\\&+0+ \cdots +0=0. \end{aligned}$$

Finally,

$$\begin{aligned}&\langle {\mathbf {F}}^{2}\rangle _{4}&\\= & {} {\mathbf {F}} \wedge {\mathbf {F}}\\= & {} F^{10}\, F^{23}(\hat{\mathbf {\alpha }}_{1}\,{\hat{\alpha }}_{0}\,\hat{\mathbf {\alpha }}_{2} \,\hat{\mathbf {\alpha }}_{3}+\hat{\mathbf {\alpha }}_{2}\,\hat{\mathbf {\alpha }} _{3}\,\hat{\mathbf {\alpha }}_{1}\,{\hat{\alpha }}_{0})\\&+F^{20}\,F^{31} (\hat{\mathbf {\alpha }}_{2}\,{\hat{\alpha }}_{0}\,\hat{\mathbf {\alpha }}_{3}\, \hat{\mathbf {\alpha }}_{1}+\hat{\mathbf {\alpha }}_{3}\,\hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2}\,{\hat{\alpha }}_{0})\\&+F^{30}\,F^{12} (\hat{\mathbf {\alpha }}_{3}\,{\hat{\alpha }}_{0}\,\hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2}+\hat{\mathbf {\alpha }}_{1}\,\hat{\mathbf {\alpha }}_{2}\, \hat{\mathbf {\alpha }}_{3}\,{\hat{\alpha }}_{0})\\= & {} -2(F^{10}\,F^{23} +F^{20}\,F^{31}+F^{30}\,F^{12}){\hat{\alpha }}_{0}\,\hat{\mathbf {\alpha }}_{1} \,\hat{\mathbf {\alpha }}_{2}\,\hat{\mathbf {\alpha }}_{3}\\= & {} 2c\,{\mathbf {e}}\cdot {\mathbf {b}} \,I_{4}\equiv 2c\,{\hat{\alpha }}_{0}\, {\mathbf {e}} \wedge {\mathbf {B}} . \end{aligned}$$

Appendix II: Derivation of (\(\Box \cdot {\mathbf {F}}\))\(\cdot {\mathbf {F}}\)

$$\begin{aligned}&(\Box \cdot {\mathbf {F}})\cdot {\mathbf {F}}\\&\quad =\{(-{\hat{\alpha }}_{0} c^{-1}\partial _{t}+\nabla )\cdot ({\mathbf {e}} \wedge {\hat{\alpha }}_{0}-c\,{\mathbf {B}})\}\\&\qquad \cdot ({\mathbf {e}} \wedge {\hat{\alpha }}_{0}-c\,{\mathbf {B}})=(-c^{-1}\partial _{t} {\mathbf {e}}+{\hat{\alpha }}_{0}\, \nabla \cdot {\mathbf {e}}\\&\qquad -c\nabla \cdot {\mathbf {B}})\cdot ({\mathbf {e}} \wedge {\hat{\alpha }}_{0}-c\, {\mathbf {B}})\\&\quad =-{\hat{\alpha }}_{0} c^{-1}(\partial _{t} {\mathbf {e}}).{\mathbf {e}}+ (\partial _{t} {\mathbf {e}}).{\mathbf {B}}\\&\qquad +(\nabla \cdot {\mathbf {e}}){\mathbf {e}}+0- {\hat{\alpha }}_{0}\,c\,(\nabla \cdot {\mathbf {B}}).{\mathbf {e}}\\&\qquad +c^{2}(\nabla \cdot {\mathbf {B}}). {\mathbf {B}}=-{\hat{\alpha }}_{0} c^{-1}\{(\partial _{t} {\mathbf {e}}).{\mathbf {e}}\\&\qquad +c^{2}(\nabla \cdot {\mathbf {B}}).{\mathbf {e}}\}+(\partial _{t} {\mathbf {e}}).{\mathbf {B}}\\&\qquad +(\nabla \cdot {\mathbf {e}}){\mathbf {e}}+c^{2}(\nabla \cdot {\mathbf {B}}).{\mathbf {B}}\\&\quad =-{\hat{\alpha }}_{0}c^{-1}\{2^{-1}\partial _{t}({\mathbf {e}}^{2}-c^{2}\,{\mathbf {B}}^{2})\\&\qquad +c^{2}\nabla \cdot ({\mathbf {B}}\cdot {\mathbf {e}})\}-\partial _{t}({\mathbf {B}}\cdot {\mathbf {e}}) -2^{-1}\nabla {\mathbf {e}}^{2}\\&\qquad +({\mathbf {e}}.\nabla ){\mathbf {e}}+(\nabla \cdot {\mathbf {e}}) {\mathbf {e}}+2^{-1}c^{2}\nabla {\mathbf {B}}^{2}-c^{2}({\mathbf {B}} \wedge \nabla ): {\mathbf {B}}\\&\Rightarrow \bar{\mathbf {f}}=\epsilon _{0}\langle (\Box {\mathbf {F}}){\mathbf {F}}\rangle _{1} \equiv \epsilon _{0}\,(\Box \cdot {\mathbf {F}})\cdot {\mathbf {F}}\\&\quad =-c^{-1}\,{\hat{\alpha }}_{0} (\partial _{t} u_{em}+\nabla \cdot {\mathbf {s}})+\epsilon _{0}[(\nabla \cdot {\mathbf {e}}){\mathbf {e}}+ ({\mathbf {e}}\cdot \nabla ){\mathbf {e}}]\\&\quad -\mu _{0}^{-1}[(\nabla \wedge {\mathbf {B}}):{\mathbf {B}}+ ({\mathbf {B}} \wedge \nabla ):{\mathbf {B}}]-\nabla {\mathrm {u}}_{em}\\&\quad -c^{-2}\,\partial _{t} {\mathbf {s}}, \end{aligned}$$

subtracting a null term involving \(\nabla \wedge {\mathbf {B}}\). Since

  1. (i)

    \(\nabla \cdot ({\mathbf {B}}\cdot {\mathbf {e}})=(\nabla \wedge {\mathbf {e}}):{\mathbf {B}} -(\nabla \cdot {\mathbf {B}})\cdot {\mathbf {e}} \Rightarrow (\nabla \cdot {\mathbf {B}})\cdot {\mathbf {e}}=(\nabla \wedge {\mathbf {e}}):{\mathbf {B}}-\nabla \cdot ({\mathbf {B}}\cdot {\mathbf {e}})\) \(=-\partial _{t} {\mathbf {B}}:{\mathbf {B}}-\nabla \cdot ({\mathbf {B}}\cdot {\mathbf {e}})\), using eq. (19) (\((\nabla \wedge {\mathbf {e}}):{\mathbf {B}}+\partial _{t} {\mathbf {B}}=0\)),

  2. (ii)

    \(\partial _{t}({\mathbf {B}}\cdot {\mathbf {e}})=(\partial _{t}{\mathbf {B}})\cdot {\mathbf {e}}+ {\mathbf {B}}\cdot \partial _{t}{\mathbf {e}} \Rightarrow (\partial _{t}{\mathbf {e}})\cdot {\mathbf {B}} =-\partial _{t}({\mathbf {B}}\cdot {\mathbf {e}})+(\partial _{t}{\mathbf {B}})\cdot {\mathbf {e}}\) \(=-\partial _{t}({\mathbf {B}}\cdot {\mathbf {e}})-(\nabla \wedge {\mathbf {e}})\cdot {\mathbf {e}} =-\partial _{t}({\mathbf {B}}\cdot {\mathbf {e}})-2^{-1}\nabla {\mathbf {e}}^{2}+({\mathbf {e}}\cdot \nabla ) {\mathbf {e}}]\), using eq. (19) and the identity: \(2^{-1}\nabla {\mathbf {e}}^{2}=({\mathbf {e}}\cdot \nabla )){\mathbf {e}}+(\nabla \wedge {\mathbf {e}})\cdot {\mathbf {e}}\) and

  3. (iii)

    \(2^{-1}\nabla ({\mathbf {B}}:{\mathbf {B}})=(\nabla \cdot {\mathbf {B}})\cdot {\mathbf {B}} +({\mathbf {B}} \wedge \nabla ):{\mathbf {B}}\). (Note \({\mathbf {B}}^{2}={\mathbf {B}}:{\mathbf {B}} =-{\mathbf {b}}^{2},\;({\mathbf {B}} \wedge \nabla ):{\mathbf {B}}=-({\mathbf {b}}\cdot \nabla ){\mathbf {b}}\) and \((\nabla \wedge {\mathbf {B}}):{\mathbf {B}}=-(\nabla \cdot {\mathbf {b}}){\mathbf {b}}\) in VA).

Appendix III: Expressions for the transformed (reverse) bivector bases

The transformed basis vectors with respect to the space–time ‘rotor’ \({\mathcal {R}}\) are given by

$$\begin{aligned} \hat{\mathbf {\alpha }}'_{0}= & {} {\mathcal {R}} {\hat{\alpha }}_{0} {\mathcal {R}}^{\dag }=\exp (\hat{\mathbf {R}}\,\omega /2) {\hat{\alpha }}_{0} \exp (-\hat{\mathbf {R}}\,\omega /2) \nonumber \\= & {} (\cosh \omega /2+{\hat{\alpha }}_{0} \hat{\mathbf {v}} \sinh \omega /2) {\hat{\alpha }}_{0}(\cosh \omega /2\nonumber \\&-{\hat{\alpha }}_{0} \hat{\mathbf {v}} \sinh \omega /2) \nonumber \\= & {} (\cosh \omega /2+ {\hat{\alpha }}_{0} \hat{\mathbf {v}}\sinh \omega /2)({\hat{\alpha }}_{0} \cosh \omega /2\nonumber \\&+\hat{\mathbf {v}} \sinh \omega /2) \nonumber \\= & {} {\hat{\alpha }}_{0}(\cosh ^{2}\omega /2+ \sinh ^{2}\omega /2)\nonumber \\&+\hat{\mathbf {v}} (\sinh \omega /2 \cosh \omega /2+\sinh \omega /2 \cosh \omega /2) \nonumber \\= & {} {\hat{\alpha }}_{0}\cosh \omega + \hat{\mathbf {v}}\sinh \omega \nonumber \\= & {} \gamma ({\hat{\alpha }}_{0}+\beta \hat{\mathbf {v}})\Rightarrow \hat{\mathbf {\alpha }}'_{0}=c^{-1}\gamma \bar{\mathbf {v}} \end{aligned}$$
(52)

and obviously, \(\hat{\mathbf {\alpha }}'_{0}\cdot \hat{\mathbf {\alpha }}'_{0}=-1\). In STA, therefore, the inertial rest frame of the observer is defined by the future-pointing unit time-like basis vector (\(\hat{\mathbf {\alpha }}'_{0}\)) along its space–time velocity \(\bar{\mathbf {v}}\), i.e. along the tangent to the world line of the observer. Putting \({\mathbf {v}}={\hat{\alpha }}_{k}\) we get directly, \(\hat{\mathbf {\alpha }}'_{0}=\gamma ({\hat{\alpha }}_{0}+\beta \hat{\mathbf {\alpha }} _{k})\). Similarly,

$$\begin{aligned} \hat{\mathbf {\alpha }}'_{j}= & {} {\mathcal {R}} {\hat{\alpha }}_{j} {\mathcal {R}}^{\dag }=\exp (\hat{\mathbf {R}}\,\omega /2) {\hat{\alpha }}_{j} \exp (-\hat{\mathbf {R}}\,\omega /2)\\= & {} (\cosh \omega /2+\hat{\mathbf {R}} \sinh \omega /2)({\hat{\alpha }}_{j} \cosh \omega /2\\&-{\hat{\alpha }}_{j} \hat{\mathbf {R}} \sinh \omega /2)\\= & {} {\hat{\alpha }}_{j} \cosh ^{2} \omega /2- {\hat{\alpha }}_{j} \hat{\mathbf {R}} \cosh \omega /2 \,\sinh \omega /2\\&+\hat{\mathbf {R}} {\hat{\alpha }}_{j} \cosh \omega /2\, \sinh \omega /2\\&-\hat{\mathbf {R}} ({\hat{\alpha }}_{j} \hat{\mathbf {R}}) \sinh ^{2} \omega /2\\= & {} {\hat{\alpha }}_{j} \cosh ^{2} \omega /2+(\hat{\mathbf {R}} {\hat{\alpha }}_{j}-{\hat{\alpha }}_{j}\hat{\mathbf {R}}) \cosh \omega /2\, \sinh \omega /2\\&-\hat{\mathbf {R}}({\hat{\alpha }}_{j}\cdot \hat{\mathbf {R}}+{\hat{\alpha }}_{j} \wedge \hat{\mathbf {R}}) \sinh ^{2} \omega /2\\= & {} {\hat{\alpha }}_{j}+\hat{\mathbf {R}}\cdot {\hat{\alpha }}_{j} \sinh \omega -\hat{\mathbf {R}}({\hat{\alpha }}_{j}\cdot \hat{\mathbf {R}}) (\cosh \omega -1). \end{aligned}$$

Since \(\hat{\mathbf {R}}{\hat{\alpha }}_{j}-{\hat{\alpha }}_{j} \hat{\mathbf {R}}=2 \hat{\mathbf {R}}\cdot {\hat{\alpha }}_{j}\) and for the unit simple bivector \(\hat{\mathbf {R}}\) we can write

$$\begin{aligned}&{\hat{\alpha }}_{j}=(\hat{\mathbf {R}}\hat{\mathbf {R}}) {\hat{\alpha }}_{j} \equiv \hat{\mathbf {R}}(\hat{\mathbf {R}} {\hat{\alpha }}_{j})=\hat{\mathbf {R}}(\hat{\mathbf {R}}. {\hat{\alpha }}_{j}+\hat{\mathbf {R}} \wedge {\hat{\alpha }}_{j})\\&\quad \,\,\, =\hat{\mathbf {R}}(-{\hat{\alpha }}_{j}. \hat{\mathbf {R}}+{\hat{\alpha }}_{j} \wedge \hat{\mathbf {R}})\\&\Rightarrow \hat{\mathbf {R}}({\hat{\alpha }}_{j}\cdot \hat{\mathbf {R}}+{\hat{\alpha }}_{j} \wedge \hat{\mathbf {R}}) ={\hat{\alpha }}_{j}+2 \hat{\mathbf {R}}({\hat{\alpha }}_{j}\cdot \hat{\mathbf {R}}). \end{aligned}$$

Finally, we get

$$\begin{aligned}&\hat{\mathbf {\alpha }}'_{j} ={\hat{\alpha }}_{j}+\gamma \,\beta ({\hat{\alpha }}_{0}\,\hat{\mathbf {v}})\cdot {\hat{\alpha }}_{j}\nonumber \\&-(\gamma -1)({\hat{\alpha }}_{0}\,\hat{\mathbf {v}})\cdot \{{\hat{\alpha }}_{j}\cdot ({\hat{\alpha }}_{0}\, \hat{\mathbf {v}})\} \nonumber \\&={\hat{\alpha }}_{j}+\gamma \,\beta |{\mathbf {v}}|^{-1} v_{j} {\hat{\alpha }}_{0}+(\gamma -1)|{\mathbf {v}}|^{-1} v_{j}\,\hat{\mathbf {v}}. \end{aligned}$$
(53)

Note that, with \(\hat{\mathbf {v}}={\hat{\alpha }}_{k};\; |{\mathbf {v}}|^{-1} v_{k}=1\) and \(v_{j}=0,\; j \ne k \Rightarrow \hat{\mathbf {\alpha }}'_{k}=\gamma ({\hat{\alpha }}_{k}+\beta \hat{\mathbf {\alpha }} _{0})\) and for all \(j \ne k,\;\hat{\mathbf {\alpha }}'_{j}= {\hat{\alpha }}_{j}\).

$$\begin{aligned}&\Rightarrow \hat{\mathbf {\alpha }}'_{j}\cdot \hat{\mathbf {\alpha }}'_{k}= [|{\mathbf {v}}|^{-1} v_{j}\{\gamma (\hat{\mathbf {v}}+\beta {\hat{\alpha }}_{0})-\hat{\mathbf {v}}\}+ {\hat{\alpha }}_{j}]\\&\cdot [|{\mathbf {v}}|^{-1} v_{k}\{\gamma (\hat{\mathbf {v}}+\beta {\hat{\alpha }}_{0})- \hat{\mathbf {v}}\}+{\hat{\alpha }}_{k}]\\&=|{\mathbf {v}}|^{-2} v_{j}v_{k}\{\gamma ^{2} (1-\beta ^{2})+1-2\gamma \}\\&\quad +2|{\mathbf {v}}|^{-2} v_{j}v_{k} (\gamma -1)+{\delta }_{j\,k}\\&=|{\mathbf {v}}|^{-2} v_{j}v_{k}\{1+1-2\gamma +2(\gamma -1)\}+{\delta }_{j\,k}\\&={\delta }_{j\,k}. \end{aligned}$$

Also,

$$\begin{aligned} \hat{\mathbf {\alpha }}'_{0}\cdot \hat{\mathbf {\alpha }}'_{j}= & {} \gamma ({\hat{\alpha }}_{0}\\&+\beta \hat{\mathbf {v}})\cdot [|{\mathbf {v}}|^{-1} v_{j}\{\gamma (\hat{\mathbf {v}}+\beta {\hat{\alpha }}_{0})- \hat{\mathbf {v}}\}\\&+ {\hat{\alpha }}_{j}] =|{\mathbf {v}}|^{-1} v_{j}\{-\gamma ^{2}\beta \\&+ \gamma ^{2}\beta -\gamma \beta +\gamma \beta \}=0. \end{aligned}$$

Thus, \(\hat{\mathbf {\alpha }}'_{0}\) and \(\hat{\mathbf {\alpha }}'_{j}\) are the new orthogonal basis vectors under the Lorentz boost along any arbitrary direction of \(\hat{\mathbf {v}}\). Now, for the same electromagnetic field bivector \({\mathbf {F}}\) expressed in two different coordinate systems, we can write,

$$\begin{aligned} {\mathbf {F}}= & {} F^{\mu \nu }\,\hat{\mathbf {\alpha }}_{\mu }\, \hat{\mathbf {\alpha }}_{\nu }=F'^{\mu \nu }\,\hat{\mathbf {\alpha }}'_{\mu }\, \hat{\mathbf {\alpha }}'_{\nu }\nonumber \\= & {} F'^{\mu \nu }\, {\mathcal {R}} \hat{\mathbf {\alpha }}_{\mu } {\mathcal {R}}^{\dag }{\mathcal {R}} \hat{\mathbf {\alpha }}_{\nu }{\mathcal {R}}^{\dag }\nonumber \\= & {} F'^{\mu \nu }\,{\mathcal {R}}\hat{\mathbf {\alpha }}_{\mu }\,\hat{\mathbf {\alpha }}_{\nu } {\mathcal {R}}^{\dag } \end{aligned}$$
(54)

and using the reverse transformation of \({\mathbf {F}}\), we get

$$\begin{aligned} {\mathcal {R}}^{\dag }{\mathbf {F}}{\mathcal {R}}= & {} F^{\mu \nu }\, {\mathcal {R}}^{\dag }\hat{\mathbf {\alpha }}_{\mu }\,\hat{\mathbf {\alpha }}_{\nu } {\mathcal {R}}=F'^{\mu \nu }\,\hat{\mathbf {\alpha }}_{\mu }\, \hat{\mathbf {\alpha }}_{\nu }\nonumber \\= & {} {\mathbf {F}}' (\hbox {say}). \end{aligned}$$
(55)

Now, the reverse transformations of the basis vectors produce \({\mathcal {R}}^{\dag }{\hat{\alpha }}_{0} {\mathcal {R}}=\gamma ({\hat{\alpha }}_{0}-\beta \hat{\mathbf {v}})\) and \({\mathcal {R}}^{\dag }{\hat{\alpha }}_{j} {\mathcal {R}}={\hat{\alpha }}_{j} -\gamma \,\beta |{\mathbf {v}}|^{-1} v_{j} {\hat{\alpha }}_{0}+(\gamma -1) |{\mathbf {v}}|^{-1} v_{j}\,\hat{\mathbf {v}} \Rightarrow {\mathcal {R}}^{\dag }{\hat{\alpha }}_{j}\, {\hat{\alpha }}_{0}{\mathcal {R}}=\{{\hat{\alpha }}_{j} -\gamma \,\beta |{\mathbf {v}}|^{-1} v_{j}{\hat{\alpha }}_{0} +(\gamma -1)|{\mathbf {v}}|^{-1} v_{j}\,\hat{\mathbf {v}}\} \wedge \gamma ({\hat{\alpha }}_{0}-\beta \hat{\mathbf {v}}) =\gamma {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{0} -\gamma \beta |{\mathbf {v}}|^{-1} v_{k} {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{k}+ (1-\gamma )|{\mathbf {v}}|^{-1} v_{j} \hat{\mathbf {v}} \wedge {\hat{\alpha }}_{0},\;j \ne k\), from which we get the explicit expressions for \({\mathcal {R}}^{\dag } {\hat{\alpha }}_{1}\,{\hat{\alpha }}_{0}{\mathcal {R}}, \;{\mathcal {R}}^{\dag }{\hat{\alpha }}_{2}\,{\hat{\alpha }}_{0} {\mathcal {R}}\) and \({\mathcal {R}}^{\dag }\hat{\mathbf {\alpha }}_{3}\,{\hat{\alpha }}_{0}{\mathcal {R}}\). Also, \({\mathcal {R}}^{\dag }{\hat{\alpha }}_{j}\,{\hat{\alpha }}_{k}{\mathcal {R}}= \{{\hat{\alpha }}_{j}-\gamma \,\beta |{\mathbf {v}}|^{-1} v_{j}{\hat{\alpha }}_{0}+ (\gamma -1)|{\mathbf {v}}|^{-1}v_{j}\,\hat{\mathbf {v}}\} \wedge \{{\hat{\alpha }}_{k} -\gamma \,\beta |{\mathbf {v}}|^{-1}v_{k} {\hat{\alpha }}_{0}+(\gamma -1) |{\mathbf {v}}|^{-1}v_{k}\,\hat{\mathbf {v}}\} =\gamma {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{k}+\gamma \beta |{\mathbf {v}}|^{-1}(v_{j} {\hat{\alpha }}_{k} \wedge {\hat{\alpha }}_{0}-v_{k} {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{0})+ (1-\gamma )|{\mathbf {v}}|^{-2} \{v_{l} v_{l} {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{k}+v_{j} v_{l} {\hat{\alpha }}_{k} \wedge {\hat{\alpha }}_{l} -v_{k} v_{l} {\hat{\alpha }}_{j} \wedge {\hat{\alpha }}_{l}\}\), which gives expressions for \({\mathcal {R}}^{\dag } \hat{\mathbf {\alpha }}_{2}\, \hat{\mathbf {\alpha }}_{3}{\mathcal {R}},\;{\mathcal {R}}^{\dag } \hat{\mathbf {\alpha }}_{3}\,\hat{\mathbf {\alpha }}_{1}{\mathcal {R}}\) and \({\mathcal {R}}^{\dag }\hat{\mathbf {\alpha }}_{1}\,\hat{\mathbf {\alpha }}_{2} {\mathcal {R}}\). Using these expressions in eq. (44) one easily gets all the expressions from eqs (45) to (50).

Alternatively, we can also get the above expressions by resolving \({\mathbf {F}}\) with respect to the space–time unit bivector \(\hat{\mathbf {R}}={\hat{\alpha }}_{0}\,\hat{\mathbf {v}}\) (\(\hat{\mathbf {v}}=|{\mathbf {v}}|^{-1}{\mathbf {v}}\) and \({\mathbf {v}}= v_{l}\,{\hat{\alpha }}_{l}\)) as follows:

$$\begin{aligned} {\mathbf {F}}={\mathbf {F}}(\hat{\mathbf {R}}\,\hat{\mathbf {R}})= & {} ({\mathbf {F}} \,\hat{\mathbf {R}})\hat{\mathbf {R}}\;(\hbox {since}\; \hat{\mathbf {R}}\,\hat{\mathbf {R}}=1)\\= & {} ({\mathbf {F}}:\hat{\mathbf {R}}+{\mathbf {F}} \cdot \hat{\mathbf {R}}+{\mathbf {F}} \wedge \hat{\mathbf {R}}) \hat{\mathbf {R}}\\= & {} ({\mathbf {F}}:\hat{\mathbf {R}})\hat{\mathbf {R}} +({\mathbf {F}} \cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}+({\mathbf {F}} \wedge \hat{\mathbf {R}}): \hat{\mathbf {R}}\\= & {} {\mathbf {F}}_{\Vert \hat{\mathbf {R}}}+{\mathbf {F}}_{\perp \hat{\mathbf {R}}}. \end{aligned}$$

The first term \(({\mathbf {F}}:\hat{\mathbf {R}}) \hat{\mathbf {R}}\) on the right-hand side lies in the plane of \(\hat{\mathbf {R}}\) (denoted by \({\mathbf {F}}_{\Vert \hat{\mathbf {R}}}\)) and the second term consists of parts of \({\mathbf {F}}_{\perp \hat{\mathbf {R}}}\) orthogonal to the plane of \(\hat{\mathbf {R}}\) and also having a common basis vector with \(\hat{\mathbf {R}}\). The final term \(({\mathbf {F}} \wedge \hat{\mathbf {R}}):\hat{\mathbf {R}}\) (also a part of \({\mathbf {F}}_{\perp \hat{\mathbf {R}}}\)) exists for dimensions higher than 3 and lies in plane touching the orthogonal plane of \(\hat{\mathbf {R}}\) only at a single point. The inner products of \(\hat{\mathbf {R}}\) with both the first and the final terms vanish and simple working out with geometrical calculus produce

$$\begin{aligned}&({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\\&={\mathbf {F}}-|{\mathbf {v}}|^{-2}[\{v_{1}^{2}\,\hat{\mathbf {\alpha }}_{1} {\hat{\alpha }}_{0}+(v_{1}v_{2}\,\hat{\mathbf {\alpha }}_{2} {\hat{\alpha }}_{0}\\&\quad +v_{1}v_{3}\,\hat{\mathbf {\alpha }}_{3} {\hat{\alpha }}_{0})\}F^{10}\\&\quad +\{v_{2}^{2}\,\hat{\mathbf {\alpha }}_{2} {\hat{\alpha }}_{0}+(v_{1}v_{2}\,\hat{\mathbf {\alpha }}_{1} {\hat{\alpha }}_{0}+v_{2}v_{3}\,\hat{\mathbf {\alpha }}_{3} {\hat{\alpha }}_{0})\}F^{20}\\&\quad +\{v_{3}^{2}\,\hat{\mathbf {\alpha }}_{3} {\hat{\alpha }}_{0}+(v_{2}v_{3}\,\hat{\mathbf {\alpha }}_{2} {\hat{\alpha }}_{0}\\&\quad +v_{1}v_{3}\,\hat{\mathbf {\alpha }}_{1} {\hat{\alpha }}_{0})\}F^{30}+\{v_{1}^{2}\, \hat{\mathbf {\alpha }}_{2}\,\hat{\mathbf {\alpha }}_{3}+(v_{1}\, v_{2}\,\hat{\mathbf {\alpha }}_{3}\,\hat{\mathbf {\alpha }}_{1}\\&\quad +v_{1}\,v_{3}\,\hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2})\} F^{23}\\&\quad +\{v_{2}^{2}\,\hat{\mathbf {\alpha }}_{3}\, \hat{\mathbf {\alpha }}_{1}+(v_{2}\,v_{3}\,\hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2}+v_{1}\,v_{2}\,\hat{\mathbf {\alpha }}_{2}\, \hat{\mathbf {\alpha }}_{3})\}F^{31}\\&\quad +\{v_{3}^{2}\,\hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2}+(v_{1}\,v_{3}\,\hat{\mathbf {\alpha }}_{2}\, \hat{\mathbf {\alpha }}_{3}+v_{2}\,v_{3}\,\hat{\mathbf {\alpha }}_{3}\, \hat{\mathbf {\alpha }}_{1})\}F^{12}]. \end{aligned}$$

Now, for example, if we consider the velocity boost along the x-axis, i.e. \(\hat{\mathbf {v}}=\hat{\mathbf {\alpha }}_{1}\), we simply get:

$$\begin{aligned}&{\mathbf {F}}_{\Vert \hat{\mathbf {R}}}=({\mathbf {F}}:\hat{\mathbf {R}}) \hat{\mathbf {R}}=F^{10}\,\hat{\mathbf {\alpha }}_{1}\, {\hat{\alpha }}_{0},\;\\&({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}=F^{20}\,\hat{\mathbf {\alpha }}_{2}\, {\hat{\alpha }}_{0}+F^{30}\, \hat{\mathbf {\alpha }}_{3}\, {\hat{\alpha }}_{0}\\&\qquad \qquad \qquad +F^{31}\, \hat{\mathbf {\alpha }}_{3}\, \hat{\mathbf {\alpha }}_{1}+F^{12}\, \hat{\mathbf {\alpha }}_{1}\, \hat{\mathbf {\alpha }}_{2}\\&\mathrm{and} \\&({\mathbf {F}} \wedge \hat{\mathbf {R}}):\hat{\mathbf {R}}=F^{23}\, \hat{\mathbf {\alpha }}_{2}\,\hat{\mathbf {\alpha }}_{3}. \end{aligned}$$

The boost, generated by \(\hat{\mathbf {R}}\), operates only on the second term \(({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\), leaving \(({\mathbf {F}}:\hat{\mathbf {R}})\hat{\mathbf {R}}\) and \(({\mathbf {F}} \wedge \hat{\mathbf {R}}): \hat{\mathbf {R}}\) unchanged.

$$\begin{aligned} \Rightarrow {\mathbf {F}}'= & {} {\mathcal {R}}^{\dag } {\mathbf {F}}{\mathcal {R}}\nonumber \\= & {} {\mathbf {F}}-({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}+{\mathcal {R}}^{\dag }\{({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\} {\mathcal {R.}} \end{aligned}$$
(56)

Noting that, \({\mathcal {R}}^{\dag }\{({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\}{\mathcal {R}}=({\mathcal {R}}^{\dag })^{2}\{({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\}=\{({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\}{\mathcal {R}}^{2}=\{({\mathbf {F}}\cdot \hat{\mathbf {R}})\cdot \hat{\mathbf {R}}\}\,\gamma (1+\beta \,{\hat{\alpha }}_{0}\, \hat{\mathbf {v}})\), we get all the expressions, eqs (45)–(50) from eqs (42) and (51).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, D. Electromagnetism according to geometric algebra: An appropriate and comprehensive formulation. Pramana - J Phys 96, 165 (2022). https://doi.org/10.1007/s12043-022-02394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02394-z

Keywords

PACS Nos

Navigation