Skip to main content
Log in

Model filled rubber Part V Mechanical properties of rubbery composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monodisperse size crosslinked polymeric particles of specific chemical compositions, synthesized by emulsifier-free emulsion polymerization, were used as model fillers to study the effect of filler chemical composition on stress-strain behavior of rubbery composites. The modulus, E or G of filled composites increased while the stress and the strain at break decreased with increasing filler-matrix interactions. Physical crosslinking, either due to particle clustering or a network of filler particles with an adsorbed polymer layer supplemented chemical crosslinking. As a result, the overall crosslink density(chemical and physical) was effectively enhanced. The strength of the physical networks, and hence the stiffness of the composites increases with increasing particle-matrix interactions. However, excessively strong matrix-filler interaction would cause a loss of polymer flexibility at the particle-matrix interface, resulting in a decreased stress and elongation at break of the particle filled composites in the order PS > PMMA > PSVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Shang, J. W. Williams and K, J. M. Soderholm, J.Mater.Sci. 27 (1992) 4949.

    Google Scholar 

  2. D. C. Edwards, ibid. 25 (1990) 4175.

    Google Scholar 

  3. P. Godard, Y. Bomal and J. J. Biebuyck, ibid. 28 (1993) 6605.

    Google Scholar 

  4. Y –C Ou, Z. Z. Yu, A. Vidal and J. B. Donnet, Rubber Chem.Technol. 67 (1994) 834.

    Google Scholar 

  5. A. Farouk, N. A. Langrana and G. J. Weng, Polym. Composite 13 (1992) 285.

    Google Scholar 

  6. D. M. Bigg, ibid. 8 (1987) 115.

    Google Scholar 

  7. L. Nicolais, E. Drioli and R. F. Landel, Polymer 14 (1973) 21.

    Google Scholar 

  8. E. M. Dannenberg, Rubber Chem.Technol. 48 (1975) 410.

    Google Scholar 

  9. Jean Le Bras and E. Papirer, J.Appl.Polym.Sci. 22 (1978) 525.

    Google Scholar 

  10. S. Ahmed and F. R. Jones, J.Mater.Sci. 25 (1990) 4933.

    Google Scholar 

  11. M. E. J. Dekkers and D. Heikens, J.Appl.Polym.Sci. 28 (1983) 3809.

    Google Scholar 

  12. K J.M. Soderholm and S. W. Shang, J.Dent.Res. 72 (1993) 1050.

    PubMed  Google Scholar 

  13. S. Mitsuishi, S. Kodama and H. Kawasaki, Polym. Composite 9 (1988) 112.

    Google Scholar 

  14. G. Landon, G. Lewis and G. F. Boden, J.Mater.Sci. 12 (1977) 1605.

    Google Scholar 

  15. M. Ratzsch, H.-J. Jacobasch and K.-H. Freitag, Adv.Colloid Interface Sci. 31 (1990) 225.

    Google Scholar 

  16. J. F. Cai and R. Salovey, J.Polym.Sci.Part B: Polym.Phys. 37 (1999) 815.

    Google Scholar 

  17. A. M. Bueche, J.Polym.Sci. 25 (1957) 139.

    Google Scholar 

  18. F. R. Eirich, in “Science and Technology of Rubber” (Academic Press, New York, 1978).

    Google Scholar 

  19. J. F. Cai, Ph.D. Dissertation, University of Southern California, 1997.

  20. D. Zou et al., J.Polym.Sci.: Part A: Polym.Chem. 28 (1990) 1909.

    Google Scholar 

  21. D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis and R. Salovey, ibid. 30 (1992) 137.

    Google Scholar 

  22. Z. Y. Ding, S. Ma, D. Kriz, J. J. Aklonis and R. Salovey, J.Polym.Sci.: Part B: Polym.Phys. 30 (1992) 1189.

    Google Scholar 

  23. D. Zou, L. Sun, J. J. Aklonis and R. Salovey, J.Polym.Sci.: Part A: Polym.Chem. 30 (1992) 1463.

    Google Scholar 

  24. J. Lee and M. Senna, Colloid Polym.Sci. 273 (1995) 76.

    Google Scholar 

  25. M. Okubo and T. Nakagawa, ibid. 272 (1994) 530.

    Google Scholar 

  26. L. Sun, Ph.D. Dissertation, University of Southern California, 1992.

  27. J. Cai and R. Salovey, Polym.Eng.Sci. 39 (1999) 1696.

    Google Scholar 

  28. L. Sun, J. J. Aklonis and R. Salovey, ibid. 33 (1993) 1308.

    Google Scholar 

  29. Z. Y. Ding, J. J. Aklonis and R. Salovey, J.Polym. Sci., Part B: Polym.Phys. 29 (1991) 1035.

    Google Scholar 

  30. S. Wolff and M. Wang, Rubber Chem.Technol. 65 (1992) 329.

    Google Scholar 

  31. D. Stauffer, “Introduction to Percolation Theory” (Taylor and Francis, Philadelphia, PA, 1985).

    Google Scholar 

  32. E. Yamada, S. Inagaki, H. Okamoto and J. Furukawa, J.Appl.Polym.Sci: Appl.Polym.Symposium 50 (1992) 295.

    Google Scholar 

  33. J. Furukawa, Polym.Bull. 7 (1983) 31.

    Google Scholar 

  34. K. Umeya and Y. Otsubo, Polym.Eng.Sci. 21 (1981) 619.

    Google Scholar 

  35. F. W. Rowland and F. R. Eirich, J.Polym.Sci. A-1 4 (1966) 2401.

    Google Scholar 

  36. A. T. Clark, I. D. Robb and R. Smith, J.Chem.Soc. Faraday Trans. I. 72 (1976) 1489.

    Google Scholar 

  37. S. W. Shang, J. W. Williams and K. J. M. Soderholm, J.Mater.Sci. 29 (1994) 2406.

    Google Scholar 

  38. J. W. Williams, S. W. Shang and M. D. Sacks, Mater. Res.Soc.Symp.Proc. 119 (1988) 17.

    Google Scholar 

  39. J. Jancar and J. Kucera, Polym.Eng.Sci. 30 (1990) 707.

    Google Scholar 

  40. S. Wu, Polymer 26 (1985) 1855.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J.J., Salovey, R. Model filled rubber Part V Mechanical properties of rubbery composites. Journal of Materials Science 36, 3947–3953 (2001). https://doi.org/10.1023/A:1017922322114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017922322114

Keywords

Navigation