Skip to main content
Log in

Glass formation, optical properties and local atomic arrangement of chalcogenide systems GeTe-Cu and GeTe-In

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass-forming regions of ternary Ge-Te-Cu and Ge-Te-In chalcogenide glasses are examined by differential scanning calorimeter and by X-ray diffraction. Glass transition and crystallization temperatures are about 120 °C To 260 °C, respectively higher than those of binary Ge-Te glass [T. Katsuyama and M. Matsumura, “Infrared Optical Fibres” (Adam Hilger, London, 1989) p. 212]. Only a small range of compositions after quenching the melting alloy is characterized by disordered state, but this range of composition is widened when using a vapor deposition technique. These compositions have two glass transition temperatures, showing the existence of phases in the sample. Both the Kissinger equation and modified Kissinger kinetic analysis were adopted to estimate activation energy and the reaction order of the process. Ge-Te-Cu and Ge-Te-In crystallized in two stages, nucleation and crystal growth. These two processes can be distinguished by exothermal crystallization patterns. An atomic radial distribution analysis has been made on bulk Ge1Te4In x and Ge1Te4Cu x with x = 0.1 by X-ray diffraction techniques. The radial distribution function (RDF) is discussed in terms of the structure factor F(s). Thin films of Ge-Te-Cu and Ge-Te-In are deposited on silicate glass and silicon wafer substrates by vacuum evaporation. The optical energy E opt are determined from transmission and reflection data of a deposited films. The value of E opt decreased by increasing metal additive such as Cu or In and discussed as a function of the conditions of their preparation such as substrate type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Katsuyama and H. Matsumura, “Infrared Optical Fibers” (Adam Hilger, London, 1989) p. 212.

    Google Scholar 

  2. Idem., Appl. Phys. Lett. 49 (1986) 22.

    Google Scholar 

  3. T. Takamori, R. Roy and G. J. McCarthy, Mater. Res. Bull. 5 (1970) 529.

    Google Scholar 

  4. S. Lizima, M. Sugi, M. Kikuchi and K. Tanaka, Solid State Commun. 8 (1970) 153.

    Google Scholar 

  5. J. A. Savaga, J. Mater. Sci. 6 (1971) 964.

    Google Scholar 

  6. Idem. J. Non-Crystalline Solids 11 (1972) 121.

    Google Scholar 

  7. S. Bordas, J. Casas-Vazquez, N. Clavaguera and M. T. Clavaguera-Mora, Thermochim. Acta 28 (1973) 387.

    Google Scholar 

  8. R. A. Ligero, M. Casas-Ruiz, J. Vazquez and P. Villares, J. of Mater. Sci. 27 (1992) 1001.

    Google Scholar 

  9. A. E. Owen, in “Electronic and Structural Properties of Amorphous Semi.-Conductor” edited by P. G. Lecomber and J. Mort (Academic, London 1973).

    Google Scholar 

  10. J. Tauk, in “Amorphous and Liquid Semi.-Conductor” edited by J. Touc (Plenum Press, New York, 1974) chap. 4.

    Google Scholar 

  11. R. A. Ligero, Ph.D. thesis, University of Cadiz, Spain, 1988.

    Google Scholar 

  12. J. S. Berkes, in Non-Crystalline Solids, 4th International Conference, 1977, p. 405.

  13. S. Tolansky, “Multiple Beam Interferometry of Surfaces and Films” (Oxford University Press London) 1947, p. 147.

    Google Scholar 

  14. S. Asokan, G. Parthasarathy and E. S. R. Gopol, J. Non-Crystalline Solids 86 (1986) 48.

    Google Scholar 

  15. S. Mohadevan, A. Giridhar and A. K. Singh, ibid. 88 (1986) 11.

    Google Scholar 

  16. Kissinger, Anal. Chem. 29 (1957) 1702.

    Google Scholar 

  17. N. Rysava, T. Spasov and L. Tichy, J. Therm-Anal. 32 (1987) 1015.

    Google Scholar 

  18. H. Yinnon and D. R. Uhlmann, J. Non-Crystalline Solids 54 (1983) 253.

    Google Scholar 

  19. A. Marotta, S. Saiello and Buri, ibid. 57 (1983) 473.

    Google Scholar 

  20. E. Kissinger, J. of Research of National Bureau of Standards 57(4) (1956) 217.

    Google Scholar 

  21. F. Demichellis, G. Kaniaakis, A. Tagliaferrd and E. Tresso, Appl. Optics 26 (1987) 1737.

    Google Scholar 

  22. J. Tauc, R. Grigorovici and A. Vancu. Phys. Stat. Sol. 15 (1966) 627.

    Google Scholar 

  23. E. A. Davis and N. F. Mott, Phil. Mag. 22 (1970) 903.

    Google Scholar 

  24. S. R. Ovshinsky, in “Physical Properties of Amorphous Materials” edited by D. Adler, B. B. Schwartz and M. C. Steel, Institute for Amorphous Studies Series Vol. 1 (Plenum, New York, 1985), Chapt. 2.

    Google Scholar 

  25. B. E. Warren, “X-Ray Diffraction” (Addision-Wesley, Reading MA, 1969).

    Google Scholar 

  26. Norikazu Ohshima, J. Appl. Phys. 79 (1996) 11.

    Google Scholar 

  27. K. Furukawa, B. R. Orton, J. Hamor and G. I. Williaks, Phil. Mag. 8 (1963) 141.

    Google Scholar 

  28. D. Hernderson and F. Herman. J. Non-Crystalline Solids 8/10 (1972) 359.

    Google Scholar 

  29. A. Chevy, A. Kuhn and M. S. Martin, J. Cryst. Growth 38 (1977) 118.

    Google Scholar 

  30. S. R. Ovchinsky and D. Adler, Contemp. Phys. 19 (1978) 109.

    Google Scholar 

  31. J. Bicerano and S. R. Ovshinsky J. Non-Crystalline Solids 74 (1972) 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayek, S.A., El Sayed, S.M., El-Sayed et al. Glass formation, optical properties and local atomic arrangement of chalcogenide systems GeTe-Cu and GeTe-In. Journal of Materials Science 36, 2061–2066 (2001). https://doi.org/10.1023/A:1017595202649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017595202649

Keywords

Navigation