Skip to main content
Log in

Non-isothermal crystallization kinetics of Ga–Sn–Te chalcogenide glasses by differential scanning calorimetry

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystallization kinetics of the newly developed (Ga2Te3) x (SnTe)100 − x (x = 32, 34, 36 mol%) chalcogenide glasses were investigated by differential scanning calorimetry under non-isothermal conditions. The kinetic parameters such as activation energies and Avrami exponents were determined using Kissinger, Ozawa, Augis–Bennett, and Matusita–Sakka methods. The thermal stability is evaluated and consistency is suggested for various criteria. The thermal stability of these glasses was evaluated by various criteria, revealing the relatively higher stability of the (Ga2Te3)34(SnTe)66 sample. The analyses of the crystallization phases by X-ray diffraction upon annealing suggest that the SnTe crystalline phase can be effectively controlled and independently precipitated from the glass matrix, generating promising thermoelectric glass–ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Article  Google Scholar 

  2. Lee JA, Aliev AE, Bykova JS, De Andrade MJ, Kim D, Sim HJ, Lepró X, Zakhidov AA, Lee JB, Spinks GM (2016) Woven–yarn thermoelectric textiles. Adv Mater 28:5038–5044

    Article  Google Scholar 

  3. Zhang T, Zhou K, Li XF, Chen ZQ, Su XL, Tang XF (2016) Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3. J Mater Sci 51:2041–2048. doi:10.1007/s10853-015-9514-y

    Article  Google Scholar 

  4. Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD (2016) Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater 18:194–213

    Article  Google Scholar 

  5. Xia H, Drymiotis F, Chen CL, Wu A, Chen YY, Snyder GJ (2015) Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications. J Mater Sci 50:2700–2708. doi:10.1007/s10853-015-8820-8

    Article  Google Scholar 

  6. Tritt TM (1996) Thermoelectrics run hot and cold. Science 272:1276–1277

    Article  Google Scholar 

  7. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  8. Rowe DM (1995) CRC handbook of thermoelectrics. CRC, Boca Raton

    Book  Google Scholar 

  9. Bhattacharya S, Hermann RP, Keppens V, Tritt TM, Snyder GJ (2006) Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3. Phys Rev B 74:134108

    Article  Google Scholar 

  10. Snyder GJ, Christensen M, Nishibori E, Caillat T, Bo BI (2004) Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3:458–463

    Article  Google Scholar 

  11. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11:422–425

    Article  Google Scholar 

  12. Vaney JB, Delaizir G, Alleno E, Rouleau O, Piarristeguy A, Monnier J, Godart C, Ribes M, Escalier R, Pradel A, Goncalves AP, Lopes EB, Cuello GJ, Ziolkowski P, Muller E, Candolfi C, Dauscher A, Lenoir B (2013) A comprehensive study of the crystallization of Cu–As–Te glasses: microstructure and thermoelectric properties. J Mater Chem A 1:8190–8200

    Article  Google Scholar 

  13. Zhu TJ, Yan F, Zhao XB, Zhang SN, Chen Y, Yang SH (2007) Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/nanocrystal hybrid structure. J Phys D Appl Phys 40:6094

    Article  Google Scholar 

  14. Xu E, Li Z, Martinez J, Sinitsyn N, Htoon H, Li N, Swartzentruber B, Hollingsworth J, Wang J, Zhang S (2015) Diameter dependent thermoelectric properties of individual SnTe nanowires. Nanoscale 7:2869–2876

    Article  Google Scholar 

  15. Orabi RARA, Mechosky NA, Hwang J, Kim W, Rhyee J-S, Wee D, Fornari M (2015) Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. Chem Mater 28:376–384

    Article  Google Scholar 

  16. Zhao L-D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L (2016) Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 138:2366–2373

    Article  Google Scholar 

  17. Bureau B, Danto S, Ma HL, Boussard-Plédel C, Zhang XH, Lucas J (2008) Tellurium based glasses: a ruthless glass to crystal competition. Solid State Sci 10:427–433

    Article  Google Scholar 

  18. Taghvaei AH, Stoica M, Song K, Janghorban K, Eckert J (2014) Crystallization kinetics of Co40Fe22Ta8B30 glassy alloy with high thermal stability and soft magnetic properties. J Alloys Compd 605:199–207

    Article  Google Scholar 

  19. Málek J (1995) The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta 267:61–73

    Article  Google Scholar 

  20. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  Google Scholar 

  21. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2:301–324

    Article  Google Scholar 

  22. Augis J, Bennett J (1978) Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim 13:283–292

    Article  Google Scholar 

  23. Matusita K, Komatsu T, Yokota R (1984) Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci 19:291–296. doi:10.1007/BF00553020

    Article  Google Scholar 

  24. Zhu M, Li J, Yao L, Jian Z, Fe Chang, Yang G (2013) Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry. Thermochim Acta 565:132–136

    Article  Google Scholar 

  25. Chen Z, Li Z, Zhang Y, Liu R, Tian Y, Wang L-M (2014) Calorimetric determination of fragility in glass forming liquids: tf vs Tg-onset methods. Eur Phys J E 37:1–7

    Article  Google Scholar 

  26. Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) Kinetic study of non-isothermal crystallization in Sb0.18As0.34Se0.48 glassy alloy. J Alloys Compd 244:99–106

    Article  Google Scholar 

  27. Christian JW (1975) The theory of transformations in metals and alloys: equilibrium and general kinetic theory, 2nd edn. Pergamon, Oxford

    Google Scholar 

  28. Ahmad A, Khan SA, Al-Ghamdi AA, Al-Agel FA, Sinha K, Zulfequar M, Husain M (2010) Kinetics of non-isothermal crystallization of ternary Se80Te20− x Zn x glasses. J Alloys Compd 497:215–220

    Article  Google Scholar 

  29. Scott MG (1978) The crystallization kinetics of Fe–Ni based metallic glasses. J Mater Sci 13:291–296. doi:10.1007/BF00647772

    Article  Google Scholar 

  30. Ramanan VRV, Fish GE (1982) Crystallization kinetics in Fe–B–Si metallic glasses. J Appl Phys 53:2273–2275

    Article  Google Scholar 

  31. Abu-Sehly AA, Alamri SN, Joraid AA (2009) Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd 476:348–351

    Article  Google Scholar 

  32. Majhi K, Varma KBR (2009) Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci 44:385–391. doi:10.1007/s10853-008-3149-1

    Article  Google Scholar 

  33. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  34. Calka A, Radliński A (1988) Decoupled bulk and surface crystallization in Pd85Si15 glassy metallic alloys: description of isothermal crystallization by a local value of the Avrami exponent. J Mater Res 3:59–66

    Article  Google Scholar 

  35. Lu W, Yan B, Huang W-H (2005) Complex primary crystallization kinetics of amorphous Finemet alloy. J Non-Cryst Solids 351:3320–3324

    Article  Google Scholar 

  36. Dietzel A (1968) Glass structure and glass properties. Glasstech 22:41

    Google Scholar 

  37. Saad M, Poulain M (1987) Glass forming ability criterion. Mater Sci Forum 19:11–18

    Article  Google Scholar 

  38. Abd-Elrahman MI, Hafiz MM, Abdelraheem AM, Abu-Sehly AA (2016) Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy. J Alloys Compd 675:1–7

    Article  Google Scholar 

  39. Shaaban ER, Tomsah IB (2011) The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass. J Therm Anal Calorim 105:191–198

    Article  Google Scholar 

  40. Imran MM (2011) Crystallization kinetics, glass transition kinetics, and thermal stability of Se70− x Ga30In x (x = 5, 10, 15, and 20) semiconducting glasses. Phys B 406:482–487

    Article  Google Scholar 

  41. Shaaban ER, Elshaikh HA, Soraya MM (2014) Crystallization rate and Avrami index of different composition of Se80−x Te20Sb x . Int J New Hor Phys 1:9–16

    Google Scholar 

  42. Shaaban ER, Kansal I, Shapaan M, Ferreira JM (2009) Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim 98:347–354

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program No. 2015CB856805), the National Natural Science Foundation of China (NSFC) (Grant Nos. 11474247, 51131002, 51421091, 51271160), and the Natural Science Foundation of Hebei Province (No. A2014203260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, P., Gao, P. et al. Non-isothermal crystallization kinetics of Ga–Sn–Te chalcogenide glasses by differential scanning calorimetry. J Mater Sci 52, 2924–2933 (2017). https://doi.org/10.1007/s10853-016-0586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0586-0

Keywords

Navigation